ADA134249

MRk

RADC-TR-81-145

Final Technical Report
June 1981

ANALYSIS OF IV&V DATA

Logicon, Inc.

Jane W. Radatz

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

" ROME AIR DEVELOPMENT CENTER

Air Force Systems Commund

~ Griffiss Air Force Buse, New York 13441

t

'S ’?'# A\

This fepott has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including €oreign natioms.

RADC~TR~81-145 has been reviewed and is approved for puBiiéation.

T APPROVED: ;;
JOBN PALAIMO
Project Engineer

8 | 4 o - > 2
=5 wopnovi; | (< G) 3 Dtriies

RN ALAN R. BARNUM, Assistant Chief
R Information Sciences Division

. FOR THE COMMANDER: é "f?

JOHN P. WUSS
Acting Chief, Plans Office

-

N 7 ~1f your address has changed or 1f you wish to be removed from the RADC
. I walldng Iist, or if the addressee is no longer ewployed by your organizatiou,
3 ' please notif€y RABC. (ISIE) Griffiss AFB NY 13441. This will assist us in
: maintaining a current wallivg liet. _ '

Do uot veturn this copy. Ketain or destroy.

UNCLASSIFIED
(‘ SECURITY CLASSIFICATION OF THIS PAGE (When Dats Enteced) .
3 — READ INSTRUCTIONS
R {'1"{ / REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
3 : ‘ /. ?(mﬂ. =]z. ;OVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
b AN { % :
(V| aaoefmosizies + D Aya 299
F g T TITCE rand Sabnities | o Fyre-érmeront-4-REAIOD COVERGD
- " J|'ANALYSIS OF IV&V DATA , /7| Final Technical Kepost,
3 : 1 Apr 80 —~-31 Mar 81, |
: ' —.-}- Tt PERFORMING.OR0; REROAT NUMBER
. f/j R:SED-81319 /.
F v 3 - R YTE Y T rm—— N TANT RUMBER(s)
b g ¢ [O)[Jane W.[Radatz </ 5 | F30602-80-C~0115/, - -
3 . ‘__/»-«-‘-*'“'"""""'” e - 1 re 4 eeen
9. PERFORMING OQRGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENYT. PROJECT, TASK
- _\ Logicon, Inc. Y __@32?%0 '%79,"'/ Nvu"‘“/
¥ ; 255 W. 5th Street \ifl/ 252§3106(\13m:f;wﬂ
f San Pedro CA 90731 R
= ' 1. CONTROLLING OFFICE NAME AND ADDRESS 7 £ L 13..-REBOAT DaTE
¢ 3 Rome Air Development Center (ISIE) s u June 1981 -
.- - K Griffiss AFB NY 13441 "1’2.6‘“"““ OF PAGES
16 MONITQORING AGENCY NAME & AQORESS(!H qilfermt l(ou Contrall ice) 1S, SECURITY CLASS. (of thia report)
| Same) ,f"/ " | UNCLASSIFIED
'_ ‘/'_ e [TSa. ngé;‘,‘&E'{‘C"m"?°°"'“°“l°"‘°
: ; N/& '
'. T8. OISTRIBUTION STATEMERT (of ihie Report)
- ' Approved for public release; distribution unlimited.
'.' : 17, DISTRIBUTION STATEMENT fof the sdatract entersd in Block 30, it ditfersnt lrom Repon)
' Same
~_ j 8, SUBPLEMENTARY NOTES
§_ RADC Project Engineer: John Palaimo (RADC/ISIE)
3
S » ;. T, KEV WORDS (Continus un reverss 5iue 1 necesnery i (Genilly by Dlock numbe?)
Independent Verification and Validation Development Productivity
Softyare Reliability Software Error Analysis
5 Softhare Maintainabilivy Software Ervor.Categories
= Devplopment Cost Software Data Collection
\ RITRACT [CORtInus on (ooaite $1d9 1 ROERSIST W TIATIY By BINCH RUBPEr])
his report presents the results of a one-year study of Independent Veeo!fid
cation and Validation (IV&V) results. Five large IVEV projects are
examined to determine the coffects of IV&V on software reliability, main-
tainability, and development cost/productivity. Current literature relee
vant to these toples is surveyed. 1V&V-detected anomalies are categorizaed
as to location, error category, cffect, severity, acceptance, and resolu-
tion, Differences in project results arve used to formulate rccommendation,
for improving IV&V offectiveness, ,

00 \J4n 1473 coiviow or 1 wov es 13 osson UNCLASSIFIED
SECURITY CLASSIPICATION OF THIS PAGE [hon Daie Entared)

4%/{ : ;j (?JKﬁjA/ L Lﬁ

1.
2.

3.

4.

5.

6.

7,

Res
5.1
5.2
" 5.3

TABLE OF CONTENTS

Introduction . L L d - L] * * . * . . L * » . L * * L] . » L] . L]

IVEV Project CharacteristiCs « o o o o o o o o o o s o o o »

2.1
2.2

Development Project Characteristics « « o « o o « o &

IVAV Project CharacteristicsS o o « o o o o o o o o o o

Genera] Resu]ts . L L] . . . L) . . .] L J [] L] L] . L L L [] L] L]

‘DWNO\U\‘DQ’NH

3
3
3.
3.
3.
3.
3.
3‘
3.
R
4
4

1
2

-

Res
6.1
6.2
6.3

.

¢

7.1
1.2
7.3
1.4

L

esults Concerning Development Cost/Productivity + .

Onc1u5i0n5 LI R R RN D 2 I I D I D DY DL D B BN BN I B A

Number of Anomalies Found . . « « . . e v e e v e
Distribution of Anomalies Among Development Materials
Anomaly Categories « « o
Anomaly Effects « + « &
Anomaly Severity « « + +
Phase of Anomaly Detection
Anomaly Report Acceptance
Anomaly Resolution « + + &
Data Relationships « + . .

. * L] ¢ @& . L] * L .

e o » o 9 e o
*® e e e & 9
e o o o & o o
¢ o o o o o
e 5 o & o &
s & o ¢ o o @
*® 5 & ¢+ o @
» o * o e »

L]
L
.
A
L
L]

] L] * . * *
® o 2 e+ o @
. L L) * L »

*® o o o o

esults Concerning Software Reliability « . . v o ¢ v v o

Relevant Findings in the Literature .+ « « o« ¢ « v o

® ® e ® & & o e o

*

L 4 L] - - -* L 2 - . L4 L

Project RESUTES v o v 4 ¢ o ¢ o o o o o 5 s o o s s o o s

esults Concerning Software Maintainability« .,

Software Attributes That Contribute to Maintainability
IV&V's Potential for Improving Maintainability
P"'OJGCt Resu]ts 1) L] L] . » L] . @ . @ . [3 L] “« » [] e o »

Factors Affecting Development Cost/Productivity
Factors Affected by IVEV & + ¢ ¢ v v o ¢« 4 o o &
Projact RESUTES o o o o s o v o o o 6 o o » o s

L4 - L d .
s s &
- . - -

Study ConclusionS v v o o o o o o s o 5 o v & s
Recomnendations for IVEY Planning and Management
Recommendations for Future Study « « v o o & « &
Recommendations for Data Collection

. . - . -
- . * - L]
- a L] [-

Appendix A - Project Selection « o o o ¢ o v s ¢« o s o ¢ o o o o

Appendix B - Data Collection .+ . . o v ¢4 .

. L4 . L d L] L L] - . .

Appendix C - Software Features That Contribute to Maintainability

References

e * * L * @ « o ° ¢ o L] * e v L * ° - L . .« » . L] L

. s o *» ® & @

e & ¢ e »

- L] e - .

* . - * -* L d L 2 e - L J

L] . - - . L -

[] - - »

- L] £l - L 4 L [] » Ll L 4

- L - *® * . .

- - L] [3

s ity

2l.
22,

LIST OF ILLUSTRATIONS

Anomalies Per Thousand Machine Instructions
Code Anomalies Per Thousand Machine Instructions . .
Development Materials in Which Anomalies Were Found
Predicted Effects of the Anomalies Reported « . . &
Severity Ratings of the Anomalies Reported . ¢« o« ¢ o ¢ ¢ o o o &
Severity Ratings of Code Anomalies « « « ¢ o« o o o« o &
Anomalies Found in Each Development Phase « . « o ¢ ¢ «
Anomaly Report Acceptance « « ¢« « o o ¢ o o o o o o o
Anomaly ReSOTULTON « « ¢ ¢« o o o o o o o o o o s o o o
Acceptance of Anomaly Reports Concerned With Re11ab111ty
Resolution of Anomalies Concerned With Reliability « « « « & &
Corrected Reliability Anomalies Per Thousand Machine Instructio
Development Materials in Which Corrected Reliability Anomalies
Were Found v« & v v v ¢ v ¢ o v o v s 8 6 08 4 66 s s e s e e e
Number of Anomalies Affecting Each Aspect of Reliability « « ¢« « &
Severity Ratings of Corrected Reliability Anomalies .+ + ¢« ¢« ¢ « &
Development Phase in Which Corrected Reliability Anomalies Were
Detected L] L] L] L] L] L L] . L] [L] L] - . L] L L] * - L L]] L] L] [] . . L)
Acceptance of Anomaly Reports Concerned With Maintainability . . .
Acgﬁptance of Anomaly Reports Concerned Solely With Maintain-

ab ity L] L] . - L] L] L] L] . [] * L] L] . L] * L] [] . . . L] L L] L] L] » . .
Resolution of Anomalies Concerned With Maintainability « « « « « &
Resolution of Anomalies Concerned Solely With Maintainability .,
Development Materials in Which Corrected Maintainability Anomalwes
Nere Found L . L] * * L) * L] L] L[] > . . » [] L * *] . L] L] L 3 1] ® L] L] L]
lv&vcostll.l..'....’..li......l..'ll

a o s ®
L] L] L] *
e o e
* » [] L]
. L] L] L4
¢ & o @
* e o e

-

*® o » » »
[3 * . L] *
L[] L] * * *
- » L] . . []

ns

LIST OF TABLES

Selected Projects « o v ¢ s v o s 4 o s 6 0 s
Software Tools Used on the IVEY Projects . . +.
Data Collected From the IVAV Projects .+ « o«
Number of Anumalies Reported in Lach Category
Anomaly Severity Relationships « « ¢« o ¢ « o »
Anomaly Resolution Relationships o « « & o 4
Nuiber of Corrected Reliability Anomalies in Lach ¢
Number of Corrected Majntainability Anomalies in Ea
Factors Affecting Development Cost/Productivity
Cost Benefits of Early Detectione<Scenario 1 .
Cost Benefits of Early Detection--Scenario 2 .
[V&V Effects on the Cost of Defect Removal . .
Cost Effects of Invalid Anomaly Reports . . .
Sumnary of Anomaly Report Processing Effects .

L] L] L] - L]
- * -« . - L4

.
e

teg
h €

e ¢ s 2 s o w

or =3

¢« & ¢ ¢ ¢ & (BC e s & s s

gor

« o ¢ 3 o ¢ M e ¢ & & &« =
qaoconﬂcoocvoac
e 2 & 9 3 e g 4 s ¢ ¢ o o
e ® & 8 & ¢ & & 5 & & * & =
e & ¢ & a o & & e & ®« & o @

. . - * * .

.
-
»
-
.
»

s« & e a & 8

- . [} . [3

2-

® © e o e o

* e & o

[[2 . . L] . [2 [] . & . »

10
13
18
24

35
46
66
71
88
90
93
96
98

SUMMARY

The Analysis of IV&Y Data Study was a one-year project undertaken to determine
the effects of Independent Verification and Validation (IV&V) on software re-
liability, maintainability, development cost, and development productivity.
Five large IV&V projects were selected for study. Information was collected
from each of the five projects concerning the development effort, the IV&V
effort, and each anomaly reported by IV&. Current literature was surveyed
to obtain information relevant to software reliability, maintainability, de-
velopment cost, and development productivity. The IV&V results were analyzed
in the light of findings from the literature, and conclusions were drawn and
recomnendations formulated for improving IV&V effectiveness.

The results of the study may be summarized as follows:

e General Results: 1575 anomalies were reported by the 5 pro-
Jects, Of these, 1023 concerned software reiiability, 854 con-
cerned software maintainability, and 167 concerned efficiency,
usability, and other effects. Multiple effects cause the sum to
exceed 1575,

e CEffects on Reliability: The primary concern of IV&V is software
rellability.

- Each IV&V prcject reported an average of 150 anomalies (2.2
per thousand machine language instructions) that would have
affected program reliability and that were considered im-
portant enough to be acted on.

« Of the three programs that have recorded operational per-
formance, none has required modification to correct reli-
ability problems after undergoing IVEV.

o Effects on Maintainability: IV&V effects on maintainability
varied dramatically from one project to another, depending upon
project objectives: '

- Wherg the IV&V charter included maintainability as a con-
cern, as many as 197 anomalies concerned solely with maine
tainability were reported and corrected.

- Where maintainability concerns were deemphasized, as few as
three such ancialies were reported.

e Effects on Development Cost/Productivity:

- IVAV cost averaged 25% of development cost and 20% of total
acquisition cost on the projects surveyed.

- Cost savings resulting from the detection of reliability

anomalies alone ranged from 5% to 25% of development cost,
in soie cases exceeding the cost of the IV&V effort.

.3-

- The detection of maintainability and other anomalies had
additional cost benefits on the software life cycle.

- QOut of 125 cost/productivity factors identified from the
literature, IV&V has no effect at all on 90, indicating
the limited overhead that IV&V places on the development
process.

- Of the remaining 35 factors, IV&V has a positive effect on
27 and a negative effect on 9 (on one, both a positive and
negative effect could be seen).

- IV&V enhances programmer productivity by decreasing the
time spent in false starts and defect removal.

The major conclusions of the study were as follows:

IV&V results depend on project charter and directives--IV&V
finds the types of problems it is directed to find.

IV&V has a significant effect on software reliability,

IV&V is being underutilized as a tool for improving software
maintainability.

IV&V can pay for itself through the detection of reliability
anomalies alone.

The cost benefits of VAV are enhanced by early detection of
ancmalies.

Major recomuendations derived from these conclusions are as follows:

To increase IV&V's effect on reliability: encourage independ-
ence of outlook and techniques, allow for early detection of
problems, and ensure that anomaly corrections are reverified.

To increase IVAV's effect on maintainability: include a main-
tainability evaluation in the IV&V project's charter and allow
time in the development process for verification of final pro-
gram documentation.

To increase IVAV cost benpefits: begin IVEV early in the devel-
opment process, requive delivery of preliminary development
materials, especially those for requirements and design, and en-
sure proapt action on IVAV findings.

PREFACE

This docygant is the technical report for the Analysis of IV&V Data Study
perforied by Logicon, Inc., under Contract F30602-80-C-0115 with the Rome Air
Development Centér (RADC). The work was performed during the period 1 April
1980 to 31 March 1981, The author of this report is Jane W. Radatz. Tech-
nical direction was provided by Mr. John Palaimo, the RADC project engineer.
Special thanks are owed to Mr. ODonald Fletcher (WSMOY/RSCS), Captain John
Grelck (BMO/MNNAG), and Lt. Colonel Thomas Jarrell (ASD/YYM), who provided
data essential to the study. Significant contributions to the data collection
activity were also made by Elaine Renner, Norie Roeder, and Joan Small of
Logicon. Susan Moy and Myra Chern provided expertise in the statistical anal-
ysis of the IV&V data. Marilyn Fujii, Edward Hinton, Jeffrey Laub, and Dennis
Meronek reviewed this report and provided valuable comments and sugyestions.

hipgpaslon Por

NTIS CRARL

DIIC TaB |
Unonnounced 0
Justirscatioﬁa_wmm
By_ i ' |
| Distribution/

cesxtim

k‘“ﬂiggal‘sillty Codéé o
Avall snaggr T
Dist Speeial

Al |

R i

ey iy

1. INTRODUCTION

Independent Verification and Validation (IV&V) is the systematic evaluation of
a computer program by an agency independent of the developer. Usually per-
formed in parallel with the software development effort, IV&V has as its major
objectives detecting development problems as early as possible and providing
the program office with increased visibility into the development effort. The
basic tenet of this approach is that the independence of the IV&Y agency
provides a fresh viewpoint, an objective attitude, and tools and techniques
specifically designed for error detection.

Current trends in large-scale Department of Defense (DoD) software procurement
are toward increasing use of IV&V as a managerial aid. Air Force Regulation
122-9 requires IV& for all software that exercises direct control over nu-
clear weapons. The Navy's software life cycle management guide, NAVELEXINST
5200.23, "strongly recommends" full IV&/ for all projects in certain cate-
gories and requires program managers to “keep in mind the advantages of having
an IV&V contractor" when planning a software development project. Additional
Air Force policy statements are expected in the near future making IV&V a part
of the development of all ewbedded computer systems. This increasing use of
[V8V has resulted from growing concern for the quality of computer software
and frow recoynition of the serious impact of software errors on critical and
costly systems.

On most projects, use of VGV is at the discretion of the program manager,
Because [V&Y can be a significant cost fuctor in a software development proj-
ect, the decisions of whether ond how to use it are major ones. Until now, no
quantitative data have been available to help a program manager make these de-
cisions or to provide baselines against which IV&V results could be measured.
The Analysis of IV&V Data Study was undertaken to provide this information,

The objectives of the study were as follows:

o To determine the effects of IVEV on software reliability, waine
tainability, development cost, and development productivity

o To formulate recomnendations for improving the effectiveness of
IV&V on future projects

The approach that wes taken was te obtain the results of actual 1V&Y projects,
to identify siynificant similarities and differences among them, and to cor-
relate the findings with results found in the Viterature. Section 2 describes
the projects that were used for the study. Sections 3 through 6 present re«
sults of the data analysis. Conclusions and recoimnendations are presented in
Section 7. Octails of the technical approach are given in Appendixes A and B.
Appendix C identifies software features that contribute to maintainability.

2. IV&V PROJECT CHARACTERISTICS

The study examined five large IV&V projects. These projects were selected
from 35 candidate projects based on criteria including the size and applica-
tion of the system being evaluated and the availability of data for the IV&V
study. Table 1 identifies the projects that were selected. The following
paragraphs describe these projects in terms of the development projects under-
going IV&V and the characteristics of the IV&V projects..

2.1 Development Project Characteristics

The development efforts evaluated by the five IV&V projects involved a variety
of scientific applications and employed different development techniques.
Their basic characteristics are summarized below.

2.1.1 Project 1
Project 1 evaluated three interrelated programs:

¢ Two command and control programs
¢ A mathematical program invoked by the command and control pro-
qQrams

The command and control programs each consisted of 24,000 assembly language
source lines and were real-time, interrupt-driven programs. One was being
modified; the other was undergoing initial development. The mathematical
program consisted of 39,000 FORTRAN source lines and 2,000 assembly language
source 1ines., 1t was a time-critical batch program (that is, it had to finish
executing within a given amount of time) and was undergoing initial develop-
ment..

Development of this system took place over a 3-1/2-year period. Programnine
practices included top-down program design, use of a basaa program support
Tiorary, and use of a medified programier team.

2.1.2 Project 2

Project ¢ evaluated a wajor wodification to the three programs involved in
Project 1. Program sizes, real-time charscteristics, and programaing prac-
tices remaingd virtuvally the same.

Project 3 evaluated critical portions of a missile tracking and analysis sys-
tem. The overall system contained 176,000 source lines. Included in the
study were IV&V efforts focusing on two key programs:

¢ A dedicated operating system
o A missile tracking program

M3} oN It wsy /I0H 4851 1D)SAS DIPMII0S SD4UBLAR UP 30 ARA] 5
Y109 S3A yloq wSy/IGH 06 w21SAS Ap{dsip 4413-1923 P 30 APA] ¥y
159354S
PN oM uzod wSy/INH ALY sysfjrue pue Hupyseay 21)SS1w P 30 AZA] £
LUO13BIL }Lpom uD§ 1801} ppom
Jofey oN y3ioq mSy /0 NEB w9 3ISAS (02IUOD PUP PURCEIDD P 3O ATA] 2
Y3094 OM 4309 sy /I0H €6 W31SAS {0JIHOD PUP PURIIIND P JO ARA] 1
uoLleatsLpoy hul M/S 1M adAl =] 3013014053 Jaguny
FLEN HADPOLY /14 obenfue] 324noS 3oalodd

si32{044 paidaas -1 s8lqel

-10-

The operating system was a real-time program consisting of 14,000 assembly
language source lines. The missile tracking program was a real-time program

$onsisting of 23,000 FORTRAN source lines and 16,000 assembly language source
ines.

Development of the system took place over a 4-year period. Programming prac-
tices included the use of both full and modified programmer teams.

2.1.4 Project 4

Project 4 evaluated a real-time display system. Included in the study were
[V&V efforts focusing on programs totaling 40,000 FORTRAN source lines and
1,000 assembly language source lines. The system included both real-time and
nonreal-time components and was developed over a period of 2-1/2 years.

The Project 4 development was the only one of the five that was considered to
have used modern programming practices. Features of the development effort
included:

Top-down design at both the system and program levels

Use of a program design language

Weekly walk-throughs from program inception

Use of a modified programmer team

Use of structured FORTRAN implemented with a preprocessor
Development in "builds"

Use of a fully automated program support library

2.1.5 Project 5

Project 5 evaluated portions of an avionics system totaling 158,000 lines of
JOVIAL and assembly language code. Included in the study were IV&V efforts
focusing on a real-time portion consisting of 52,000 assembly language source
lines.

Development of the program took place over a 6-year period. Programming prace
tices included top-down design at both the system and program levels and the
use of a modified programmer team. A unique feature of the Project 5 develop-
ment effort was a change in charter that occurred during the coding and check-
out phase. Rather than completing the initial development as originally
planned, the developer was redirected to explore alternative implementations
as part of the development effort,

2.2 IV&V Project Characteristics

The standard approach to IV&V entails five distinct activities proceeding in
narallel with the development effort:

® Requirements Verification: Evaluation of the program require-
ments, as documented in requirement specifications, to ensure
that they are clear, complete, correct, and consistent with one
another and with higher level specifications

-11-

¢ Design Verification: Evaluation of the preliminary and detailed
design, as documented in the before-code design specification,
to ensure that it is a complete and correct implementation of
the verified requirements

¢ Code Verification: Inspection of the coded version of the pro-
gram to ensure that it is a complete, correct, and (sometimes)
optimal implementation of the verified design

¢ Program Validation/Testing: Formal testing of the program to
ensure that it satisfies its specified requirements

o Documentation Verification: Inspection of the requirement and
design specifications, and sometimes the user manuals and other
documents, to ensure that they accurately describe the program
as implemented

There was considerable deviation from this process among the projects sur-
veyed. The IV&V efforts comprising Projects 1 and 2 focused primarily on code
verification and testing. Requiremen: specifications were for the most part
accepted as valid and used as the baseline against which the code was eval-
uated. Design materials were not published until well after code production
was under way, so were not available for design verification. Analysis of the
requirement specifications, design specification, and other documents for
adequacy as program documentation was not within the scope of the projects.

On Project 3, the requirement specifications contained a significant amount of
design material. As a result, requirements verification detected both re-
quirement and design problems. The before-code design specification contained
only high-level design information, preventing a detailed design verification
activity using this document. Code verification and testing took place as
usual, and considerable attention was devoted to documentation verification.

Project 4 addressed the development effort that used modern programming prace
tices. On this project, IV&V participants took part in the weekly walk-
throughs of the evolving requirements and design. Many problems were reported
in these meetings rather than through the normal medium of anomaly reports.
Code verification and testing were performed as usual. Documentation verifie
cation was deemphasized, and most documentation problems were reported by
letter rather than by anomaly report.

Project 5 was the only one of the five to include a full design verification
step. This project was also nonstandard, however, in that requirements ver-
ification was not performed and in that, with the redirection of the develop-
ment effort to explore alternative implementations, the IV&V effort conducted
extensive testing in support of this new effort.

Table 2 identifies the software tools used on the five IV&V projects. Al
five projects used both static analysis tools, which process or evaluate the
programn without executing it, and dynamic analysis tools, which aid in program
testing by providing a test environment, controlling and monitoring program
execution, or modeling program behavior.

<12-

-

Table 2.

Tool

Software Tools Used on the IV&V Projects

Function

Projects 1, 2

Tape Comparison Program

Source Comparison Program

Code Inspection Aid

Software Environment Simulator

Data Base Analyzer

Memory Decode Program

Extension Register Analyzer
Real-Tine Analyzer

Source Conversion Program
Assembler, Compiler, Loader
Hemory Allocation Program
Crum Memory Lump Processor
Program Structure Analyzer
Interpretive Computer

Simutation (ICS) of Flight
Computer

HOL Simulation of Flight
Proyranm

~ 1CS of Ground Proyram Corputer

Identify differences between object tapes
Identify differences between source files

Generate global cross-references and an-
notated source listings; identify certain
errors

Simulation of flight computer, peripheral
wevices, and external environnent

Generate set/use information from the
global cross-reference

Translate load module to source languaye

Verify correct setting of extension
registers

Detect potential conflicts caused by in-
terrupts and job priorities

Convert source code to execute on dif-
ferent computer

Verify correct assembly, compilation,
Toading ’

Provide vartiable name and initial value
of each location in tewporary meuory

Format and print selected portions of
drum memory

Confiru corvect compilation of proyram

Verify correct operation of flight pro-
yrau in its tardget computer

Evaluate flight program accuracy and
correctness

3

Verify correct operation of C°l progra

-13-

e e T I TSI e i

o

Table 2. Software Tools Used on the IV&V Projects (continued)

Tool

Function

Data Base Preprocessor

Branch Analysis Program

Project 3

Global Cross-Reference Gen-
erator

Source Comparison Program
Interrupt Intercepter

Software Monitor
Console Monitor

Time Mark Tool

Real-Time Driver
Console Test Proyram
Macro Test Program

Data Capture Program

Plot Board Driver
Task Hetwork Sisulator
Test Uriver

Automated Flowcharter

Format and verify flight constants prior
to simulation

Monitor proyram execution by recording

the number of times each cede seyment is
executed and each branch outcome occurs

Generate cross-reference of program
variables and labels

Identify differences between source files
Intercept and modify real-time interrupts

Record the state of the system at pre-
selected execution points

Capture transient displays on CRT console
and produce hard copy for later analysis

Monitor and record all program requests
made to timer; sinulate additional re-
quests

(reate real-time tasks and monitor task
dispatching

Send selected discretes to flight control
console to test hardware interface

Verify correct operation of program
macros

Write incoming telemetry data on tape

Send data to plotboards to test hardware
interface

Sinulate a network of real-time tasks to
test task comaunication and yueueiny

Drive operating system and monitor be-
havior

Generate flowcharts from code

«14-

Table 2. Software Tools Used on the IV&V Projects (continued)

Tool

Function

I L BT R T

Program Structure Analyzer
Time Code Translator Test
Program

Branch Analysis Progran

Execution Tracer

Data Base Modifier
Data Base Access Program

Sensor Uata Extractor

Routine Interface Verifier
Microfiche Plot Program
History Tape Converter
History Tape Perturber

Data Flow Analyzer

Software Timer

Address Locator

Perform symbolic execution and path
analysis

Test hardware clock

Monitor program execution by recording
the number of times each code seyment
is executed and each branch outcome
occurs

Execute in conjunction with instrumented
code to trace execution, display inter-
mediate values, and verify assertions

Modify data base values for prograim
testing

Permit batch access to data base for
testing of individual routines

Extract sensor data from history tapes
for comparison and for use in driving
plotboards

Verify consistency and correctness of
routine interfaces

Generate microfiche plots of sensor data
Convert history tapes generated by one
system to format suitable for testing
another system

dodify contents of history tape for pro-
gram testing

Perform analysis of interprocedural data
flouw to detect potential mishanaling of
data

tonitor execution time of sclected
wodules

Determine address of any routine in pro-
yram load module

=15«

T

o YRS e g et n e e s o

Table 2. Software Tools Used on the IV&V Projects (continued)

Tool

Function

Project 4

Source Comparison Program

Global Cross-Reference
Generator

Automated Flowcharter
Program Structure Analyzer
File Index and Source List
Generator

History Tape Dump

History Tape Modifier

Load Module Comparison Program
Project 5

Environmental Simulator

Electronic Warfare Simulator

Core Image Comparator

Core Image Reformatter

Computer Interface Program
Patch Processor

HOL Simulation of Program

Identify differences between source files

Generate cross-reference of program
variables and labels

Generate flowcharts from code

Perform symbolic execution and path
analysis

Generate indexed source listing

Format and print contents of program
history tape

Modify history tape for program testing
Ensure that the load module tested by

IV&V matches the Yoad module certified
for operational use

Simulate electromagnetic pulse environ-
ment

Simulate flight computer and interfacing
equipuent

Compare core image before and after
simulation to detect memory destruction

Reformat core image for use on another
computer

Permit interfacing of two computers
Apply patches to a given core image

Evaluate algorithms used in program

-16-

S A

VN R T TR R A VT MR A P M AP A U eenn | AT S A i E€ S8 AN fore 5 P v et ATy 1 Tty S S e

3. GENERAL RESULTS

Table 3 identifies the types of data collected from the five IV&V projects.
Analysis of this data was performed with the aid of the Statistical Package
for the Social Sciences (SPSS), a collection of statistical programs developed
by the University of Chicago (Reference 1).* Results specific to IV&V's
effects on software reliability, maintainability, and cost/productivity are
presented in Sections 4, 5, and 6, respectively. General results useful as
background for these findings are presented in this section.

3.1 Number of Anomalies Found

IV&V results are of two general types:
¢ The detection of anomalies

¢ Assurance of the absence of anomalies of particular types in
given segments of code or documentation ;

Both types of results contribute to the determination of software quality.
The first type, however, not only determines software quality but affects it
as well by bringing about the correction of software faults. To evaluate
IV&V's effect on software reliability and maintainability, therefore, the
study focused on the anomaly detection aspect of IV&Y, looking at the number
and %jpes of anomalies detected and the impact and resolution of these
anomalies.

A total of 1575 anomalies were reported by the five IV&V projects. The number
reported by each project was as follows:

Project 1: 249
Project 2: 325
Project 3: 510
Project 4: 175
Project 5: 316

To normalize these figures, they were compared with the number of machine
language instructions generated by the programs examined. The results are
shown in Figure 1. The overall average was 4.6 anomalies per thousand machine
language instructions. Project 3 varied most dramatically from this average,
with 13.4 anomalies per thousand machine instructions.

Since different projects operated under different charters regarding analysis
of specifications and other documents, a similar analysis was performed using
only the code anomalies found. A total of 802 code anomalies were reported,
broken down as follows:

w0 H., et al., Statistical Package for the Social Sciences, McGraw Hill,
19,9,

-17-

PO PR R T ML W A M e e et

Table 3. Data Collected From the IV&V Projects

e Data concerning each anomaly reported by IV&V

A
H
ok ot et

Location (specification, code, etc.)
Type of problem

Probable effects if left uncorrected
Severity

Detection date

Detection method

Resolution

Resolution date

e Data concerning each IV&V project

Objectives

Schedule

Man-loading

Relationship with developer
Tools and techniques used
Cost

¢ Data concerning each development project

Schedule

Man-1oading

Development practices used

Test results

Software operational performance
Software maintenance requirements
Cost ‘

«18«

B TIPS, TV S e R et e S AL s A S R A R YIS T A € RS Sl T s 1 RN A et anets o e e

15
14 13.4
x 13-
- - 12
11-

8+ 7.3

5 4.6

3 2.7 2.4

Project 1 Project 2 Project 3 Project 4 Project 5 All Projects

Figure 1, Anomalies Per Thousand Machine Instructions

-10.

L A 7 S R
TR AP

Project 1: 193
Project 2: 205
Project 3: 111
Project 4: 100
Project 5: 143

A comparison of these figures with the number of machine language instruc-
tions in each program is shown in Figure 2. These results are surprisingly
uniform, averaging 2.2 code anomalies per thousand machine instructions. The
somewhat higher figures for Project 5 probably result from the experimental
nature of the development effort, with many different versions of the program
being tried over the course of the development. [t is interesting to specu-
late that the low figure shown for Project 4 results from its use of modern

“ programming practices, but the sample size is too small to support such a
conclusion. The overall average of 2.2 code anomalies per thousand machine
instructions is slightly higher than the 2.0 figure observed by Rubey in a
study of IV&V results performed in 1975 (Reference 2).*

3.2 Distribution of Anomalies Among Development Materials

Figure 3 indicates, for each project, the number of anomalies found in:

¢ Requirement specifications before code delivery

o Design specifications before code delivery

o Code

o Requirement specifications after code delivery
, e Design specifications after code delivery
k ¢ User documentation and other materials
i The analysis was intended to determine where and when development problems
E were likely to be found by IV&V. Instead, it illustrates the high dependence
: of IV&V results on IV&V and development project characteristics.

B
3
1
{

i
i

lg\
N
hs
A

The results for Projects 1 and 2 clearly reflect their focus on ensuring com-
pliance of the code with the requirements. The only surprising aspect is the
significant number of requirement anomalies reported on Project 2. The re-
sults for Project 3 reflect its attention to all aspects of IV&V, the unavail-
ability of detailed design materials for a full design verification, and its
strong emphasis on documentation verification, Results for Project 4 reflect
the reporting of requirement, design, and documentation anomalies in meetings
and letters rather than anomaly reports. Project 5 results show its de~
emphasis on requirement verification and its performance of design verifica-
tion, code verification, testing, and documentation verification. The change
of charter imposed on the Project 5 development effort, making it an ex-
perimental rather than standard development project, makes it impossible to
determine whether the performance of design verification would have decreased
the number of anomalies found in the code.

*Rubey, R. J., “Quantitative Aspects of Software Validation," Proceedings of
the International Conference on Reliable Software, April 1975, pp. 213-?8 .

R TR NIRRT TR T g e 3 ST PN TN e 5 NN P TROrNTED AN AN I RGN, A NI o AT A S R R

i g P SR

it

3.3

E | 3 2.9
B i 2.1 2.2 2.2

J)\ 1.3

| 1

f; 'ff Project 1 Project 2 Project 3 Project 4 Project 5 All Projects

Figure 2. Code Anomalies Per Thousand Machine Instructions

-21-

i
i
¢
.
P
7
H
1

puno{ 248M S3i|PWOUY YOLUMm u] s|etsajey jusudo|anag

¢ aanbry

G 323f04d t 393foud £ 399004 2 393foag 1 323l04d
T 1 L& 1,1, o/nz| ﬁaen_
— a | 1
o/n 2 T, Iq 3 02
Nm Nm, ~ 0
i HI_ o/l L 09
a
g A
— 08
.% | Ty - 001
. B) .
Nx! — 021
| ~ Ovl
J
Ml = 091
a
Jayzp/uoryerusumdog 4asq 0/n — 081
3p03 493je -- uorjedtyliadg ubisag :<g
9p03 J334e -- uOL3edL1d3ds Juswedinbay :2y)
. apoy : || ~ D02
9p0d 340j8q -- uoijedijioads ubisag :1Ig J
9p02 240489 -- suoLjeotyioads juswaainbay Ty
cAay — 0¢e

1030044 UO pajs0day SO LBWOUY JO J3qUAN

0f all five projects, only Project 3 rcported a significant number of anom-
alies in the user documentation. The other projects were not chartered to
evaluate these materials, and reported only those anomalies they happened to
detect in trying to use the documents themselves.

3.3 Anomaly Categories

Table 4 shows the number of anomalies reported in each category for each
project and for the study as a whole., Notable results are as follows:

e Among requirement anomalies, incorrect and incomplete require-
ments predominate, accounting for 72% of all requirement anom-
alies.

e Among before-code design specification anomalies, reported al-
most solely by Project 5, anomalies concerned with choice of
algorithm/mathematics, data definition, and data handling pre-
dominate.

e Among code ancmalies:

- Projects 1, 2, and 5 had as their most prevalent category
"choice of algorithm or mathematics," a dJesign-oriented
category.

- A1l projects reported a considerable nuamber of data handling
problems,

- Overall results show that code anomalies fell into the fol-
lowing categories, in decreasing order of frequency:

Choice of algorithm or mathematics (30%)

Data handling (24%)

Interfaces, 1/0 (11%)

Reguirement /design compliance; data definition (each 7%)
Other :ude problems (6%)

Sequence of operations (6%)

Timing, interruptibility (5%)

Presantation, standards compliance (4%)

COoOO0OCOoOoC o

e For documentation anomalies in the after-code design specifica-
tion, prevalent categnries were incorrectness, incompleteness,
and, for Project 3, presentation and standards compliance.

Correlation of these results with development project characteristics led to
the following observations, ' ,

31.3.1 New Development vs. Modification
The Project 2 development represented a modification to the Project 1 soft-

ware, The considerably higher nuiber of requirement anomalies for Proj-
ect 2 may refiect a less rigorous requirements definition activity on the

-23-

Table 4. Nuuber of Anomalies Reported in tach Category

‘ Project
Anomaly Category 1 2 3 4 5 All
Requirement Specification Anomalies
Rl. Incorrect Requirements 1> 5 73 1o 4 163
s 3 R2. Inconsistent Requirements 9 13 16 7 17 62
iy : - R3. Incomplete Reyuirements 22 21 % 29 6 138
3] R4. Other Requirement Problems 7 18 15 3 -- 43
RS. Presentation; Standards Compliance 2 _ 3 4 1 =-- _1U
Total 5 11 62 5 ¢ 10
Before-Code Design Specification Anomalies
Dl. Requirement Compliance ~ == 0 -- 1 11
1 2 D2. Choice of Algorithm, hathematics -~ - b -~ 11 16
L. D3. Sequence of Uperations ST T R 8 7 1
[£ : D4. Data Definition e me =a == 19 19
D5, Data Handling - == e~ == 18 18
D6. Timing, Interruptibility LR TN 0 0
D7. Interfaces, 1/0 e me e a-] 8
D8. Other Desiyn Problems -~ -- 1 - 0 1
09. Presentation; Standards Cowmpliance _-~ == 1 _-- _ 0 1
Total 0 70 17 "0 o8 Ol
T Code Anomalies
& 2 Cl. Reguirement, Desigh Compliance 13 6 26 9 e 5%
. C2. Choice of Algorithm, Mathematics 7 6 1 17 4w 222
€3. Sequence of Uperations 8 4 12 J 1 &
C4. Data Definition A 6 22 1 a1 6 %
¥ 19 : €5, Dato Handling W 62 & X 3 N
g, X 6. Timing, Interruptibility ' 24 9 e o 39
E ¢7. Interfaces, /0 23 2 9 1 WM
- 8. Other Code Problems 3 6 2 3 13 - ab
- C9. Presentation; Standards Coupliance 3 - 6 o 7 10 3¢
Tota) - 195 705 TIT T T3 752
After-Code Desiyn Specification Anoimalies .
! Pl. Incorrect Docuichtation e s Y § % &
P2. Inconsistent Documentation - e b 1 2 Y
P3. Incowplete Docusientation TR Y/ § 10 7
P4, Other Documentation Problems R § | 3 1 1%
P5. Presentation, Standards Compliance -- =~ 50 .-))
Total 0 T TW TW & WO
User Oocuientation Anomalies 0 2 % 9 0 ol
Other Anomalies e 2 2 13 1y
Ancialies in All Cateyories 289 32% 510 175 316 157%

-28-

RSO RS PATT I)
i A B

modification activity than on the initial development. The two projects had
approximately the same number of code anomalies, with Project 2 having con-
siderably more anomalies in the categories of data definition and data han-
dling, and considerably fewer in requirement/design compliance and timing/
interruptibility.

3.3.2 Language Type

Project 5 addressed a program written entirely in assembly language. It is
interesting to note that this project reported the most anomalies of any
project in category C3: "Sequence of operations," an area notoriously more
difficult in assembly language than in higher order language. No other lan-
guage-related results were observed.

3.3.3 Modern Programming Practices

The system evaluated by Project 4 was developed using modern programming prac-
tices. A possible correlation is that Project 4 reported the fewest anomalies
of any project in category C3: "Sequence of operations." This result may be
attributable to the use of program design language and structured programming.
No other trends were observed that could be attributed to modern programming
practices.

3.4 Anomaly Effects

Figure 4 indicates the number of anomalies on each project that had the poten-
tial to affect software reliability, maintainability, efficiency, and usabil-
ity. The numbers may exceed project totals because of the potential for mul-
tiple effects.

As with anomaly location, discussed in Section 3.2, anomaly effects reflect
each project's charter and objectives. Projects 1 and 2 were concerned almost
solely with software reliability. As a result, over 90% of tha anomalies re-
ported on these projects affected reliability. The other projects were con-
cerned not only with reliability, but with maintainability, efficiency, and
usability as well. Their results present a more balanced picture.

Project 3 was uniyue in reporting considerably more maintainability than re-
liability anomalies. This was the result of its emphasis on documentation
analysis. The number of reliability and maintainability anomalies for Project
4 were almost the same. Project 5 reported slightly more reliability than
maintainability anomalies.

Overall results show that 65% of all anomalies affected reliability, 54%
affected maintainability, 4% affected efficiency, and 6% affected usability.
On all projects, anomalies affecting efficiency and usability accounted for
only a small percentage of the total number of anomalies. Sections 4 and 5,
which focus on reliability and maintainability anomalies, therefore discuss
nearly all of the anomalies reported.

WL Er G,

R

A PRI A RO ot o » o e 5. e

PajJoday salL|eBuwouy 8y3 jO S333533 PaIDipadd -y a4nbiy

G 399fo4d v 103foug € 329fo4d Z 333fo4g 1 398fouyd
0 gy =T
n fi
3 n 3 ’ ’
3 - DE
- 09
n W
T 06
, Wt
- 021
W
~ ST
- 0B1
W |
r 012
d
4 - 0b2
- 042
A1LLLqesn :n
AousLoLiiy 3 ~ QCE
ArLiLqeutejurel :j L g
. A3LLiqetiay ™ 9

d t A9y - DSE

139{04d uo pajaodoy SaLleWOUY 30 JIQUNYN

-25“

NI YIS S R W T T RO T e S 0 ST T LRV TR RN

3.5 Anomaly Severity

Figure 5 indicates the number of anomalies on each project that had severity
ratings High, Medium, Low, and Unknown. The overall results for the five
projects show that approximately a tenth of the anomalies received High
ratings, a fourth were rated Medium, and two thirds were rated Low. While the
precise meanings of these ratings vary from one project to another, they are
generally considered to have the following interpretation for the types of

programs considered here:

o High: Threat to life or property
o Medium: Serious threat to mission objectives
o Low: Degraded system performance or non-operational effect

The seriousness of these consequences indicates the significance of the 110
High- and 404 Medium-severity anomalies reported.

There is a connection between the type of anomalies reported on a project and
the severity rating results. Projects 3, 4, and 5, which reported a signifi-
cant percentage of maintainability anomalies, show higher percentages of Low
ratings than Projects 1 and 2, which concentrated on reliability problems. To
arrive at a more accurate comparison, the same analysis was performed using
only the anomalies concerned with program code. Figure 6 shows the results.
The overall figures show that over a tenth of all code anomalies received High
ratings, 41% received Medium ratings, and just over half received Low ratings.
Again, the results varied significantly from one project to another. Extremes
were Project 1, which reported 21% High, 48% Medium, and 30% Low, and Project
4, with 1% High, 12% Medium, and 87% Low. The other projects had severity

ratings closer to the overall average.

3.6 Phase of Anomaly Detection

Figure 7 shows the number of anomalies detected during each development phase.
The results indicate the degree to which IV&V contributed to early detection
of anomalies., Over half of the anomalies were reported before the developer's
testing phase. Project 4 had the most dramatic results, with 89% of all anom-
alies reported before development testing. Project S's results are also im-
pressive, with 78% of all anomalies detected before the testing phase. Sec-
tions 5 and 6 discuss the benefits of early detection.

3.7 Anomaly Report Acceptance

Figure 8 shows the percentage of anomaly reports on each project that:

Were accepted by the program office as valid

Were accepted with changes

Were rejected by the program office

Were withdrawn by the I[V8V contractor or superseded by other

reports
Had unknown acceptance

e —
e S — -
e e - s i

pajuoday saljewouy ay3 30 sbupiey A3Lssaag -G aunbiy

§ 323foud ¥ 398foud € 393foud 2 199fouy 1 393foud
| Se— — : | Sme—
n | n H n
e
- 02
W H
H
n - o
) H £
3
_ , -09 &
| =3
W 08 =
. Q i
W . T 5 3
M W - 001 - !
M W W 5
: -1
M - 021 3
S
(=g
2
- oYl
=
1 ©
- 091 3
3
1 ct
— 081
A L4BABS umowjun
3 A3L40ADG MO o7 - 002
K31 LADARS WNLPAY W o i
A3L49A3S YbLH :H)
TAay - 00%

satlewouy apo) JO sbupjey A3L4aA3S -9 aunbiry

G 399fo4d ¥ 399foag £ 3o3lo4q 2 303foud 1 323fou4
: n -
H - 01
, W
=2
: , 02 §
._ 1
H 2
08 9
: o
{ [=]
: [« N
A " - oy
X
. s &
: 1 &
L K=
o
: w
u. 7 09 @
3
3 .I- I“
[2d
~0L 2
: o
. =1
~, W -08
,. .
W 7 a
-06
A3 LADADS umouwyun :n W i
A2L4BA3S MOT 11 001
A} LADADS WNLPBY W 7
A1149A9S YBLH :H
1 Aoy - 011
_”vm,.
oo e 2 o — e e e ST S S Al ...rﬁcﬂ,r,.,.”.‘, 2 I

aseyd juswdo]aAa(@ yorj uL punogj saiiemouy °/ aunbiry

: S 32afoud ¥ 309fo4d € 309foud 2 123loud 1 329foud
d 4 d d o ¥ d a ¥
a
1 d 3 - o€
!
a £
H - 09 mw
1 -
1 a) o
d - 06
: >
¢ =
¢ (=)
: 3
i — 021 D.h.
0 2 g
3 - 0S1T & !
9 3
L 2
(=
P
1 - 012 3
E.
a
- 02
-~ 0.2
aseyd bulysal-3sod :d
aseyq buiysal -}
aseyq 3noysay) pue BULpoj :) - 00€
aseuq ubisag :@
aseyqd uoLjLuirjasg sjuswadrnbay Yy
Aoy - OEE

aoue3dadoy j4o0day Alewouy g unbr4

LLB43A0 G 303f04d 309f04d € 393f04dg 2 393fouad 1 399f04g

[NE T L2 mn R

:3_ _u __ 3 T Y n"yo
Y Y i

n o1

E
Fd
«
M
¢

- 02

b A A T A A T TR YRR YRRV

- 0¢

te
¥
4
H
4
i
¥

- Ob

- 0§

52 PIRISTER,

- 09

- 0L

N TR TN NN LA AT e

- 08

309(04qd U0 pajuaoday sai|ewouy 40 aBRIUIIAIY

— - 06
Y v |

umouun - v

poposJ4adns JuMedpyltm

pajoalay

sabueyd yjim pajdaddy

ua331LJ4M se pajdaddy

A0 RS)

v - 001

TR

Y

NTOEES

mt.\wﬂg\)

DN P Tosot 154 Nt A at R K ey

B S N e

B R LU S O U

The results indicate the degree to which IV&V results were both valid and
relevant to the software development effort. The acceptance rate on all
projects was high, ranging from 83% to 98%. Taking into consideration anomaly
reports that were accepted with changes, the acceptance rate ranged from 88%
to 98%. Of the anomaly reports for which acceptance was known, 93% were
accepted, an indication of the high validity of IV&V results.

3.8 Anomaly Resolution

Figure 9 shows the percentage of anomalies on each project for which:

e Action was taken
¢ Action was not taken
o Resolution was open or unknown at the time of the study

Anomalies were considered to have been acted on if they were fixed during the
project, fixed in a program update, negated by an unrelated change, or dealt
with by a work-around solution. Anomalies were considered not to have been
acted on if they were rejected, withdrawn, superseded, or accepted but left
unchanged. Anomalies were considered to have open or unknown resolution if
resolution was deferred to a progrem update that had not taken place at the
time of the study or if resolution could not be determined.

‘Projects 1 through 4 have similar profiles, indicating a very high percentage

of anomalies acted on. These results indicate that IV&V results were not only
valid but were sufficiently important to require corrective action. The
atypical figures for Project 5 are attributable to the experimental nature of
the development project. Anomalies reported in the different program versions
did not necessarily require correction. These figures are not typical of most
IV&V projects. ‘

3.9 Data Relationships

Tables 5 and 6 present the results of statistical analyses examining the re-
lationships between selected anomaly characteristics. The chi-square statis-
tical procedure was used. A high chi-square value indicates the possibility
that the two variables are statistically related. The procedure assumes that
there is no association, then computes the probability of observing in re-
peated samples a relationship less pronounced than that in the current sample.
When this probability is less than 5%, there is statistical evidence that the
two variables are related; when it is less than 1%, the statistical evidence
is even stronger.

The chi-square statistics measure the degree of relationship between each pair
of variables. This relationship may or may not be une of cause and effect.
The nature of the relationship may be determined by further examination of the
data.

Table 5 shows the relationship between anoinaly severity ratings and anomaly
location, effects, and development phase when detected. The results indicate
a significant relationship between severity and these other anomaly character-
istics. Specific results revealed by examination of the data are as follows: -

-32-

uoLIn|osay Alewouy ‘g aunbrq
p-1 s308foag s3d9foud Ly G 399fodd ¢ 309loug € 309foug 2 39aloug I 3%9fo4d
: T_]J
n/o
: 070 : oy n/o ot
N n/g N n/o N
N N -0¢ o
n/o 2
: .
Lo 32
s
; N TR
-or S
v — 0S m v
)
- 09 o
°
#E w
Lo v iy
: v =
- 08 -
v v 3
@
i ” v -06 &
w umouun/uado uoiniosay :n/0 - 001
5 uo pajoe 0N :N
g uo paijay :y
& 1 A3y

-34-

0°0 (49y30 “Burysaj) <sa (mo] 4o wnipay “ybiy
#»»1€L°0T (49430 “buirysaj) *sa (Mo “wnipay 40 Yb1LH 4
2.i¥°0 (BbuLgsay 40 BuLpo) ‘ubisag 4o sjuswauainbay) °sa (Mo 40 wnipay “yELy)
x96% ¥ (burysa] 4o Burpo) ‘ubiLsag 40 sjuawaainbay) °sA (MO ‘wnipay 4o ybLy)
*»»8£G°9¢€ (buLysa)] “buLpo) ‘ubirsag ‘uoilLuliag sjuawaa Lnbay) °sa (Mo “‘wnipay ‘ybiy)
’ pa312339g usyM aseud juawdoaaag *SA A3143A3S
»»EVL°9 - (42430 “Adus1dL433) *SA (Mo 40 wnipal “ybLH)
*»x[62°¢1 (42y3p AousLd1isl) *sAa (Mo “wnipay 40 yb1H)
$¥80°¢ (49Yy3g “Aoeundoy) °sa (M0 4o wnipay ‘yb1H)
xxEE2° 1Y (42y30 “Aoeunddy) °sA (M0 ‘wnipay 40 YbLH)
€08°1 - (42y3Q “ssauldBU40)) °SA (MO U0 wnipsy “yb1H)
*»L19°9Y -~ (49Y3Q “sSauldau40)) -sa (Mo “wnipal 40 Y6iH)
*»x128°¥¥e (43y3Q “Aoualdtisl “A3LundsS “AdeUnddY €SSaUORUU0)) °SA (MO ‘wnipal ‘ubLy)
31038433 feuotjesadp *SA AJLI3ADS
PPYATAN (48y3n “uotiedadg) °sA (MO 40 wnLpal “yBLH)
xx212°891 (49430 ‘uoijzeaadg) -sa (Mo “wnipsp 40 YH1IH)
¥+898° (€ © (4sy30 ‘A3Lilqeulejuley) °sA (MO 40 wnLpay “4biy)
#x€2L°CLT (43430 “A3L|tqeulejuley) °SA (MO ‘wnipsy Jo 4SLH)
(42yzp “A3rpLqesn “A3LjLgeLyidasp
*»*11¥°881 ‘juswdo|sAag “A3Ljiqeuielutey ‘uoljedadQ) *sA (Mo “wnipay “yb1H)
303433 AdeRiilag *SA AJ14DA3S
*»9€T V12 (42430 “3p03) *sA (Mo 40 wnLpay “yYbLH)
EXVAC) B 74 (42430 “9p0)) °sa (Mo “wnrpay 40 ybLy)
(uotgjeguswnoog Jas(
fuoLgedrj1oads uSiseg apo)-uslsy €9po) ‘uoiledijioads
*%x99/°/92 ubLsa(@ 3p0)-a403dg ‘uoliedti1dads sjuswasinbay) °sa (Mo ‘wnipay ‘ybLy)
uo13ed07 *SA A3LJ43A8S
anjep SLSA|euy
auenbg-1y)

19A3] %G e JuedLyLubis
[aaaf 21 3@ juestyubls

L}
*

xx 910N

sdiysuolie|ay A3149A8S Lewouy °g a|qe]

i e arﬂv..q.\,.s},.,.ma{? RPN

s,

LSRN B e

*»»£16°L1 Msoq 40 WnLpay .;mw:w “SA Mnmuumgxou 0N “pa3d34u0]
6v9°1 MO ‘uintpay 40 ybiLy) *sa (pa3d2.4409 0N .vmuum;uouw
(umoujun/uadg
x»087°61 (MO “wnipay ‘Yybiy) °SA €pa3lsanuo) 0N €pal3dau.aoj)
A7149A3G °*SA UOLIN{OSIY
**9/[E°61 (42y30 “Buiisa]) °sa (pa3da4u0) 0N €pazdaauol])
1262 (Buiisa) Jo Burpo) ‘ubLsag 40 sjuswouinbay) °sa (pa3osuuo) joN ‘po3034.40))
(umouyun/uadg
*x99T°9/ (buiysal “buipo) ‘ubisag ‘uoLjiurjag Sjuswaainbay) *SA pajdsudo) 10N ©pazdaddor)
P8312913(uU3yM aselyd Juawdo[aAdQg “SA uoLIn|CcsSIY
och 1 (43uy30 “Aouadisiiilz) *sa (pa3da440) 30N €pa323.440))
¥x£99°9 (4943Q “Aoeundy) -sa (pa3daudo) 0N “pa3da440))
x258°t (49420 “ssauldauu0)) °sa {pa3da4u0) 0y ps3dau4c))
(umouupn/uadg
*x869°62 (49y3Q “Aoud1d14)q “A314nDddS “AOPUNIDY €SS3U303440)) "SA “paldauauo) JON € pa3oaudor)
3129333 (euoLjedad(°SA uDiIN|0SdY
xOPy Y (42430 “A31|1qeUiejuiey) *SA (Pa1DR440) 0N €PIJIBUI0T)
vy e (49y30 ‘uotiedadg) °sa (pa3de4u0) JON pazdaUao0))
(42y3p “A3tiigesn “A3riiqers (umoujun/uadg
*x110°62 -4ap “juswdo|aAaag ‘A3ijiqeuteiulely ‘uorjeasdp) °SA “pajdaudo) 0N paidsuuc))
309443 Adrutdd °SA UDEIN[OSIY
*x161°81 (42y30 ‘opo)) °sa (pe339440) 0N paOBUU0))
{uorjejuaundog J49sM ‘uol)
-e01J123ds ubl1Sag apo)-493)y “9po) ‘uoriedLiloads (umouun/uadg
#»xP10°GLT ubLsag apo)-a40jog ‘uoijedtsLdads sjuswosinbay) °sA paldauuo) JON €paldeddor)
UN11BI07] °SA UCLIN|0SIAY
an|ep SisAjeuy
aaenbg-1yj
[9A3] %5 32 JuesLjiubls = 4
19A3] 41 3e JuedLjlubLS = 4 330N

sdiysuoije|ay uoLInjosay Alewouy °g 3jqe)

«35-

|

TR e

T LY R Y

Code anomalies are more likely to be rated High or Medium than
anomalies in other development materials.

Anomalies in the after-code design specification and user
documentation are almost always rated Low.

Anomalies affecting reliability are the only type likely to be
assigned High ratings.

Most anomalies with maintainability as their primary effect are
rated Low.

Anomalies detected duriny the requirements definition phase are
more likely to be rated High than those detected later.

Anomalies detected during the coding and testing phases have
severity ratings very close to the overall average of 7.2% High,
26.4% Medium, 66.4% Low.

Table 6 shows the relationship between various anomaly characteristics and
anomaly resolution. Here again, significant relationships exist. Discounting
results attributable to the atypical resolution pattern of Project 5, the fol-

_lowing results can be observed from the data:

Anomalies in all categories are far more likely to be acted on
than not.

Anomalies affecting maintainability and usability, while seen-
ingly less significant than those affecting reliability, have an
even higher probability of being acted on than reliability
anomalies; anomalies concerned with efficiency have a lower:
probability.

Not surprisingly, anomalies with High severity have the greatest
probability of being acted on; the probabilities for Medium and
Low anomalies are approximately equal.

Anomalies detected during the coding and checkout phase of de-
velopment are the most likely to be acted on.

-36-

4. RESULTS CONCERNING SOFTWARE RELIABILITY

The primary concern of IV& is software reliability, defined by Boehm as the
extent to which software can be expected to perform its intended functions
satisfactorily (Reference 3).* Included within the scope of reliability are:

e Operational Correctness: Ensuring that the software performs
all intended functions satisfactorily and performs no unintended
functions

o Operational Accuracy: Ensuring that mathematical functions are
performed with the required accuracy/precision

e Operational Security: Ensuring that the program is free of un-
authorized coding and incorporates all required measures to
prevent access to software and data by unauthorized persons

The major difficulty in evaluating IV&V's effect on software reliability is
the possibility that the developer may eventually have detected some or all of
the problems reported by the IV&V agency without the latter's help. The fact
that IV&V was the first to find them proves that:

e IV&V is capable of detecting development problems.
o V&V provides visibility into the development process.

e IV&V finds problems earlier than development testing and may
therefore prevent the schedule slips and ¢ost overruns that
result from late detection.

It does not necessarily prove that without the aid of IV&YV, these problems
would have gone undetected into the operational environment.

The ideal experiment for evaluating IV&V's effect on software reliability
would be to have two groups of equally experienced and talented programners
working in equivalent development environments develop the same program using
the same methods and tools., An [V&V group would be assigned to one of the
development efforts, and the resu1t1ng programs would be compared for ve-
liability. If the software that 'had undergone IV&V was more reliable than
that developed without it, it could be concluded that IV&V did indeed have a
positive effect,

The IV&YV study was forced to take a far more limited appraach consisting of
surveying the literature for relevant results and examining the data from the
five IV&V projects in light of these research findings. The results of these
activities are described in the following paragraphs.

“Boehm, B. W., et al., "Characteristics of Software Quality,” VRW Software
Series TRW-SS-73-09, Dec. 1973.

-37-

4.1 Relevant Findings in the Literature

A number of studies have noted the effects of submitting a program to two
or more test and evaluation groups in succession. Proceedings of a TRW
symposium on software development (Reference 4)* reported that on a large
development project, each successive phase of testing followed the same
pattern. Faults were found at a high rate at the beginning of the phase, then
at lower and lower rates as the phase continued. When the program was turned
over to a new test group for the next testing phase, the detection rate jumped
up sharply and the pattern began anew. The report theorized that the dif-
ferent techniques of each test group resulted in the renewed fault detection
rate.

Thayer reported similar findings in a study of five large development efforts
(Reference 5).t He identified as the cause of this phenomenon the expanded
test objectives and fresh viewpoint of each successive test group. In his
study, successive test groups sometimes found more faults than their pred-
ecessors had. -

Two other findings of the Thayer study are also worthy of note. The first is
that each test group detected faults that should have been detected in pre-
vious test phases. That is, in addition to those faults detected because of
expanded test objectives, each test group detected faults within the scope of
previous test efforts, The fresh viewpoint and different test techniques of
@ach group were considered to be the factors here, -

ne secord finding was the tendency of each test group, and in particular each

test analyst, to report several faults of a similar type over a period of o
day or two. Having detected a certain ‘ype Of fault, the analyst made a
specific search for that type of problem in other parts of the program.
Thayer states that this tendency can have very positive effects on the rate
and completeness of fault discovery, especial]v if the analyst is intimately
familar with all of the code produced by a given projramnar, -

Studies on the effects of various tools and techniques. ave also relevant, A
. study by Shooman and Bolsky (Reference 6)% found that a large proportion
of program faults can be detected by code inspection without resorting vo
computer testing. A study by Rubey (Reference 2) found that analysis methods
detect faults earlier than testing methods but that both methods are needed to

"Prdéeediﬁgs of the TRW Symposium on Reliable, Cost-Effective, Secure Soft |

tThayer, T. A. et al., Soitware Reliability Study, RAEC-TR-76~238, Feb. 1976,

sShooman, M. L., and Bolsky, M. 1., “Vypes, Distribution, and Tesi Cervection
Times fov Programning £rrors,” Procedures of the lntevnat ona! Cwae:enre gn
Reliable Software, Aprii 1975, gp. 34.-357.

o
i RSN

A

v ’ : o T

%i ~ . find all types of faults. Finally, Dana and Blizzard (Reference 7)* indicate

if' that certain tools and techniques are most effective in detecting each type of
3 fautt.

5?: ‘ A third set of results concern the benefits of early detection on program re-
3 liability. Research reported by Finfer (Reference 8)t indicates that:

B o The reliability of a system is greatly affected when problems of

ohe development phase are allowed to go uncorrected into sub-
sequent phases.

e Design -errors found in integration and system testing have a
much greater impact on reliability than if they had been de-
tected during the design phase.

¢ "Crash" development and remediation efforts generally result in
poor system design and poor-quality software.

3 The implications of these findings for IV&V include the following:

e The fresh viewpoint, independent objectives, and specialized
tools and techniques offered by IV&/ can be expected to dis-
close software faults not detected by developer testing.

e The manual analysis techniques used by TV& can be expected to
disclose software faults not detected by developer testing.

o IV&V ané]ysis and testing combined can be' expected to detect
faults in all categories.

e The early detection of problems provided by IV&/ can provide the
time needed for effective redesign, thereby improving program
reliability.

E e The IV&V analyst's intimate familiarity with the program under-
B going evaluation should make possible the detection of whole
classes of related faults.

W oditons it oo

The last phenomenon is a recognized aspect of [V&V. Often called the “"clone
effect," it accounts for the detection- of numerous anomalies on most IV&V
" projects (Reference 9).%

"7,
oy
it
by

*Dana, J. A., and Blizzard, J. D., The Development of a Software Error Theory
to Classify and Detect Software Error , Logicon Report HR-/401Z, May 19/4.

tFinfer, M. C., Software Data Collection Study, Volume I[I: Data Requirements

for Productivity and Reliability studies, RK%ﬁ-TR~75-3Z§ Vol 11T, §une 1976,
tRadatz, J. W., Ramsey, O. C., and McKillop, T. L., NSCCA/PATE Guidebooks,
Volume [II, Logicon Report R:SED-80204-I1[, June 1980.

-39-

Ml - e - cAYERS T T e -
D T e T \
A T AR A Bt e 1 MG KR s,

I (AN A% R

4,2 Project Results

The key questions addressed by the study concerning IV&V's effects on software
reliability were as follows:

¢ How many of the anomaly reports submitted by IV&V had an effect
on program reliability?

In what development materials were the anomalies located?

What types of problems did they involve?

What aspects of reliability did they affect?

How severe were their consequences?

When were they found?

What was the operational reliability of the completed programs?

The following paragraphs discuss these issues.
4,2.1 Number of Anomaly Reports Affecting Reliability

0f the 1575 anomaly reports submitted on the IV&V projects, 1023 were con-
ce{ned with software reliability. Broken down by project, the numbers were as
follows: °

Project 1: 229
Project 2: 300
Project 3: 183
Project 4: 95
Project 5: 216

4

Only a subset of these reports had an actual effect on program reliability,
namely, those that were accepted as valid by the program office and acted on
by the developer. Figures 10 and 11 show the percentage of anomaly reports
that met these criteria.

Figure 10 indicates program office acceptance of the anomaly reports concerned
with reliability. On the average, 89% were accepted as written, an additional
2% were accepted with changes, 7% were rejected, 1% were withdrawn or super-
seded, and for 1%, acceptance was unknown. Project 4 had the highest accept-

~ance rate, with 98%.

Figure 11 indicates the action taken on reliability anomalies. For reasons

described in Section 3.8, the resolution seen for Projects 1-4 is more typical
of IV3V projects than that shown for Project 5. The average for these four
projects was 79% acted on, 14% not acted on, and 7% unknown or pending.

There is no way of knowing how many of these anomalies would have been de-

tected by the developer without IVEV. The results of the literature search
imply that some at least would not have been. For purposes of the study, the
following assumption was made: Any report that was concerned with program
reliability, accepted as valid by the program office, and acted on by the

?eveloper represents an improvement in program reliability attributable to
V&V. . ’

4

A1L11qeLidy UILM pPauaaduo) sihoday Apewouy jo aduelzdaddy Q1 a4nbry

LRI SRR

s303f04d ily § 309foud ¥ 309f0ud € 309foud 2 399fou4gd 1 39afoud
‘ 3] T n =
ﬂJﬁ%m FLiLu . azmu :h&) M nzﬂﬂ.
n 2
d | M
| 3 ot 3
; J a
2
:) - 02 Py
(=]
: -oe S
3
-0 o
i o
; -y <
. b om m]
: >
r 5
oy 2
Y
: FOL =
i -
S
- | - e g
e ¢ <
u <]
v v] fto =
i umouun aoueldaddy Y mw
: popas4adns /uMedpy3 LM | | a3
Uwu.umﬁmm v 001

sabueys yjim pajdedoy
usl3lum se pajdasoy

O RIS

SO =S

Q
pV-4

v
;

i e

A3L11geL9Y YILM POUISOUO) SOL|BWOUY JO uOLIN{OSdY "T1 84nbiy

p-1 309f0ad G-1 s3oafoud G 309f04g y 309foad ¢ 308fouad 2 393foxd 1 393foud
70—
n/0 N n70 n70
-0l o
n/o N o
N n/ n/g . o m -
o
N N .mbw "y
[1:]
-0 9
N z
-0 &
o '
= o
=
-0 &
v =1
o
- 09 mmw
- m-
v
4 2
v v 3
p— ow u
v v 4
v o
=1
- 06
3
umouun/uado uor3n|osay :n/0 v @ -
uo pajoe 30N N - 001 & i
uo paloy :y ¢
A

220 3- A 2

'«

L Ry i~ e taiE i e

i

o 0 ey T Y

There were 748 such anomaly reports. For convenience, the anomalies they de-
scribe are hereafter referred to as “corrected reliability anomalies." The
breakdown of these anomalies by project was as follows:

Project 1: 188
Project 2: 216
Project 3: 139
Project 4: 90
Project 5: 115

To normalize these figures, they were compared with the number of machine lan-
guage instructions generated by the programs examined. The results are shown
in Figure 12. Project 3 had the highest number, with 3.6 per thousand machine
language instructions; Project 4 had the lowest, with 1.2. On the average,
IV&V resulted in the correction of 2.2 reliability anomalies per thousand
machine language instructions.

4.2.2 Anomaly Location

Anomalies affecting reliability could be found in requirement specifications,
before-code design specifications, code, or other materials such as trade
study reports. Figure 13 shows the number of corrected reliability anomalies
found in each of these development materials. Overall, 33% were found in
requirement specifications, 5% in before-code design specifications, 6l% in
code, and 1% in other materials. On Project 5, the only project to perform a
standard design verification, over a fourth of the. corrected reliability
anomalies were in the before-code design specification. The other projects
reported most or all of the anomalies in requirement specifications and code.

4,2.3 Anomaly Categories

Table 7 indicates the number of corrected reliability anomalies found in each
anomaly category. Significant results are as follows:

e IV&V resulted in the correction oF 245 requirement anomalies
that would have affected relfability. In 38% of these cases,
the requirements were incorrect; in another 28%, they were in-
complete. In 21% the requirements were inconsistent; in 12%
they were ambiguous, unfeasible, or otherwise unsatisfactory for
software reliability.

o IV&V resulted in the correction of 448 code anomalies that would
have affected reliability. Over a third concerned an incorrect
or unsatisfactory choice of algorithn or mathematics for the
program. Nearly a fourth concerned incorrect handling of pro-
gram data. An additional 11% were concerned with incorrect in-
terfaces or program input/output.

o IV&V methods resulted in the detection of code anomalies in all

categories. It could not be determined how many of these
anomalies resulted from the “clone effect."

-43-

e v SN SR § tn e R R N IR T R

/
i
4
|
i)

i SR L

2 ST T M A e <oz s o 1o oon e oL

S AR SR

34 2.7
2.3 '

1.2

\
\\

Project 1 Project 2 Project 3 Project 4 Project 5 A1l Projects

Figure 12. Corrected Reliability Anomalies Per Thousand Machine Instructions

punoy aJ4apM saLjewouy A3L|LqeL|{dY PSIIBLA0) YOLyM u] siersdjey juswdoiarsg £ 4nbig

AR AR RN

§ 393044 p 308foug € 309foxq 2 309foad 1 398flouy
F 1 x| |la X X1 1la x| |'a
: i -
a 5
d Y A =4
4 I -3
; 9 , %
2 2
3 a
N— - Ow m
: ry %.
i o
__ y -0t = |
i & !
» >
021 3
3 s
~ Ob1 o
) 1
- 091 3
[x g
2
- 081 g
S{eLd93el 43Y10 X M
apoy :9) - 002 <-
uoriesrjiLoads ubisag apod-adogag :Ig 1
suorjedtjLoads juswaJinbay Y
Ay - 02¢

SN AP0 £ ;an ateens o LS e M s s T e

WEIET U ATOIVPABRSS LET WAL AT DTN IR M e m e SR ¢ et W amas s dm s on e et - aae e iees

AR

P s

Table 7. Number of Corrected Reliability Anomalies in Each Category

Project
Anomaly Category 1 2 K] 4 5 Al
Requirement Specification Anomalies
Rl. Incorrect Reguirements 12 47 32 3 - 94
R2. Inconsistent Requirements 8 9 12 6 17 52
R3. Incomplete Requirenents 16 22 21 9 2 10
R4. Other Requirement Problems 5 15 8 1 - 29
R5. Presentation; Standards Compliance N/A N/A N/A N/A N/A N/A
Total 41 93 73 19 19 245
Before-Code Design Specification Anomalies
Dl. Requirement Compliance - - 8 -- 1 9
p . 3 D2. Choice of Algorithm, Mathematics - e- 2 -- 7 9
k- D3. Sequence of Operations . T -
E - A D4. Data Definition - em ee e 1 1
-3 D5. Data Handling e Y
N D6. Timing, Interruptibility R
.- D7. Interfaces, I/0 R 2 2
5 D8, Other Design Problems L T
4 D9. Presentation; Standards Compliance N/A N/A N/A NA N/A N/A
3 Total -- == 10 -- 30 40
N Code Anomalies y :
Cl. Requirement, Design Compliance 5 3 14 - 1 28
4 . C2. Choice of Algorithm, Mathematics 71 46 7 15 24 163
A C3. Sequence of Operations 7 3 9 3 W0 32
k- ! C4. Data Definition 6 16 1 18 1 42
C5. Data Handling 2 3 16 16 16 104
6. Timing, Interruptibility 18 I 2 26
C7. Interfaces, 1/0 17 14 5 9 6 51
(8. Other Code Problems .- 1 1 em ee - 2
C9. Presentation; Standards Compliance N/A HW/A NA NA NA N/A
Total 146 12 3 66 60 8

After-Code Design Specification Anomalies NJA H/A N/A N/A N/A NA
User Documentation Anomalies N/A N/A N/A N/A N/A N/A
Other Anomalies l == 3 5 6 15

Anomalies in All Categories 188 216 139 90 115 748

.-;
. if;

4
g
3

¢
g
R
:

.

BTN 40 R NI P e s G Ears T T emems e e et v ae e 4 am e A e i enl,

A

4.,2.4 Aspects of Reliability That Were Affected

The key aspects of software reliability are operational correctness, accuracy,
and security. Figure 14 indicates the distribution of each project's cor-
5 : rected reliability anomalies into these three areas. Totals may exceed the
i : number of anomalies reported because of multiple effects.

By far the most prevalent aspect was operational correctness. Most of the
; anomalies for Projects 1, 2, and 3, and all for Projects 4 and 5 fell into
o : this category. This preponderance is partly because the other two aspects of
- reliability do not apply to all types of software. Accuracy applies primarily
g to programs that perform calculations for which various degrees of accuracy or
A : precision can be achieved. Anomalies concerned with this aspect of reliabili-
ty were reported for Projects 1, 2, and 3. Security applies to software that
can be threatened with unauthorized alteration or misuse. This aspect was
limited to Projects 1 and 2, and accounted for only a small percentage of the
g anomalies on these projects. The greatest effect of IV&V 11es in. assuring
3 that the subject program operates as expected.

"i ‘ 4,2.5 Anomaly Severity Ratings

Figure 15 indicates the severity ratings assigned to the corrected reliability
anomalies. The overall figures show that about a tenth of the anomalies
received High ratings, a third were rated Medium, half were rated Low, and for
4%, the severity was unknown. Extremes were exhibited by Project 1, on which
over two-thirds had High or Medium ratings, and by Project 4, on which 85% had
Low ratings. Projects 2, 3, and 5 fell closer to the overall average.

In the context of re11ab1l1ty, these ratings have the followwng general in-
terpretation:

k: e High: threét to 1ife or property
-4 ¢ Medium: ‘serious threat to mission objectives
e Low: degraded system performance

% " The seriousness of the High and Medium impacts and the fact that nearly half
A of the anomalies had these ratings indicates the importance of these IV&V
-4 results.

;

3 4.2.6 Phase of Anomaly Detection

Figure 16 shows the number of corrected reliability anomalies detected during
each development phase. Nearly two-thirds of the anomalies were reported be-
fore development testing. On Project 4, 93% of the anomalies were reported
before the testing phase; on Project 3, 81%. All projects except Project 1
reported well over half of their corrected reliability anomalies before de-
velopment testing.

The significance of these findings lies in the results reported by Finfer:
Early detection of anomalies provides time for effactive redesign, thereby
inproving program reliability.

R S L o oy e B R,

i
%

A3t1iqeriay 30 3oadsy ydel BuLlosiiy soLjewouy jJO Jaquny “HT unbLj

. G 328lfoud 309lo04d ¢ 3oafouy 2 3o09foay 1 30efoud
m S Vv S Vv S v HWA 3
: . =
; , . =
W . : - 02 mm
: v -
..” [}
j - oy "
] (el
;e o
v - 09 o
i ct
! D
! o
Lo 7
, 3 g @
-00T = T
¢ o
5 <
- ﬂ - 021 5
J o
H 3
: 2,
5 3 - oVl 3
W 5
‘ ‘ L 091 8
5 =
£ o
i o
] - 081 o
- 3
J 00z S
£314n535 |euoijedadg :S i ®
Aoeandoy |euorjedadg :y a
$SSPUID84407) [euoljedad) 1)
Aoy - 0ve

sarjewouy A3L|LqeL[9Y POIIAAA0) SO sBurjey A3149A3§ G 24nbiryg

g 198044 t 393loud ¢ 30af0ug 2 19afo4g 1 193fo4d

R RSN L UR R o e ¢4 02

; 1
{ W
_, - -0T S
" - -
h , 02 &
! i
H ;
- 0S m
n g
-0b =
5
| W H = 2
" - 0§ .M '
: 1 =1
H i 2
H : 09 W..
2
3 ~0L ©
L " g
m. o
w.., (o]
3 -08 &
2
S
_‘\ - 06
(=]

A3 LA3ABS umowjun E
; K3La8A3S MO @1 oot =
A3LABARS WNLPAW W
A1149A9S ybiy :H
., : Koy - Ol

e)sf\g.su s T e S o~

p9310939(Q S48M sollewouy AL LgeL[3Y PIIISAL0) YoLYM U] aseyq jusudoisasgy -91 aunbidy

G 199foad ¥ 308foud € 399foag 2 193foug 1 303foag
4 a i3 a 39
1 a
=
- 02 g
3 4
— o
| 1 Lo .
1 a o
S
3
T fov 8
o
[=%
L - 05 .
9J Y
. ~ - 09 m
ﬂm
- 0L .
J =1
(=]
3
- 08 2,
= -
w
L - 06 3
gL ot - i v)
3
- 01T & §
3 :
1 * 4
- 02t
d |- 01

b S St e A e

R . s R s . S o o i e i S S e T T
L DD e T i ot il i e i i o s A

EeEss

ap Sl paR A Sl Rt

&3

4.2.7 Operational Performance of the Completed Programs

To assess the reliability of the completed programs, the following questions
were considered by the development project questionnaire:

¢ How many problems have been reported since the program became
operational?

e If the program has been modified, was it due to operational
problems, requirement changes, or other reasons?

The responses were as follows:

e For the Project 1 software, four problems were reported in
operational use. When the software was modified, however, the
purpose was to respond to requirement changes rather than fo
correct any operational problems.

e For the Project 2 software, no problems were reported in opera-
tional use. The software was modified to respond to requirement
changes.

e No usable responses were given for the Project 3 software;
records of its performance were combined with those of inter-
facing programs and could not be separated out.

e For the Project 4 software, no operational problems had been
reported, and the software had not yet been modified.

e The Project 5 software had not yet been put into operational
use; its operational performance and maintenance needs were
therefore unknown,

For the three projects for which data was available, therefore, none had re-
quired modification to correct a reliability problem encountered in the opera-
tional environment. There is no way to establish that IV&V was responsible
for this high reliability. It is safe to say, however, that with an average
of 150 anomaly reports per project having a direct bearing on the improvement
of reliability, IV&V made a significant contribution.

5. RESULTS CONCERNING SOFTWARE MAINTAINABILITY

The overall cost of a software product may be far greater than the cost to
develop it. Figures cited by Miller (Reference 10),* Fife (Reference 11),t
and others indicate that software maintenance cost--the cost of modifying a
program after it has become oparational--may account for up to 70%~75% of its
total life cycle cost. A 1976 paper by Prokop (Reference 12)# stated that
two out of every three Navy programmers and computer systems analysts were
involved in maintaining existing software. Nolan and Robinson (Reference
13)** have found that all data processing organizations eventually reach a
stage in which 70% of the effort Vs devoted to maintenance activities.

Modifying existing software is a difficult, error-prone process. A study by

McGonagle (Reference 14)tt reports that 19% of all errors detected in the
3 | software of one organization resulted from unexpected side effects to other
E: i changes. In Reference 15,%## Boehm reports that even for small modifications
b : (1 to 10 instructions), the chance of a successful first run is at best 50%,
and for larger changes, the success rate decreases steadily to about 15%.
Lehman (Reference 16)*** states that software tends to become more and more
complex with each change, making each modification more difficult than the
last. :

Increasing awareness of both the likelihood and the difficulty of software
maintenance has resulted~n new attitudes toward software development.

willer, C. R., "Software Maintenance and Life Cycle Management," Software
Phenomenology--Working Papers of the Software Life Cycle Management Work-
shop, Alriie ouse, Aug. 1977, pp. 53-59,

G
'
3

i tFife, D. ., "Software Management Standards," Software Phenomenolegy--
- Working Papers of the Software Life Cycle Management Workshop, Airlie
House, Aug. 1977, pp. 63-80. - ,

sProkop, J., Computers in the Navy, Annapolis, MD, Naval lnstitute Press,
1976. ‘

2 X AT RO
Rl AT s eV o e A

**Robinson, 0. G., "Beyond the Four Stages: What Next," Software Pheno-
menoloay--Working Papers of the Software Life Cycle Management Workshop,

tthcGonayle, J. D., A Study of a Softwarg Development Project, James P.
Angerson and Co., Sept. 1971.

stBochm, B. W., "Software and Its Impact: A Quantitative Assessment,*
Datamation, May 1973, pp. 48-59,

el ahman, Mo M., “Evolution Dynamics--A Phenomenology of Software Mainten-
ance," Software Phengmenology--Working Papers of the Software Life Cycle
Management Workshop, Airiie House, Aug. 1977, pp. 31d-323.

-53-

L

Delivered software is no longer viewed as a finished product not intended for
change. Instead, it is assumed that the operational environment will be
dynamic and that software will be required to change along with it. The re-
sult is increasing emphasis on software that is not only reliable, but main-
tainable as well.

The following approach was taken to investigate the effect of IV&V on software
maintainability:

e Identify from the literature software attributes that have been
shown to contribute to maintainability.

e Formulate hypotheses about IV&V's potential to affect these
- attributes.

¢ Analyze the results of the five IV&V projects in light of these
hypotheses.

The results of these activities are described in the following paragraphs.

5.1 Software Attributes That Contribute‘to Maintainability

Software maintenance may be performed {o rempve or correct a software fault,
to add new features or capabilities, to delete unised or undesirable features,
or to adapt the software to hardware changes (Refersnce 17).* Regardless of
the motivation for change, however, the maintemance process consists of under-
standing the existing software, making the needed changes, and revalidating
the modified software (Reference 18).t Sortware that has been designed,
coded, and documented in a way that facilitates these tasks is said to be
"maintainable.”

According to Peercy, the three basic attributes of maintainable software are:

¢ Understandability: The ease with which the purpose and organi-
zation of the software can be grasped

¢ Modifiability: The ease with which changes can be incorporated
~once the nature of the desired change has been identified

e Testability: The extent to which the software supports evalua-
tion of its performance

*Peercy, D. E., A Software Maintainability Evaluation Methodology," Proceed-
ings of the AIAA 2nd Computers in Aerospace Conference, Oct. 1979, pp. 315-
325,

tBoehm, B. W., "Software Engineering," IEEE Transactions on Computers, Dec.
1976, pp. 1226-1241.

To these three characteristics Neil and Gold (Reference 19)* add:

¢ Portability: The ease with which a software product can be
transferreﬁ from one computer environment to another

Specific software features contribute to each of these attributes. Features
that contribute to understandability include complete, accurate documenta-
tion, good traceability between code and requirements, and code and design
that are modular, self-descriptive, noncomplex, and consistent. Features that
contribute to modifiability include data structures designed to allow for ease
of expansion and change, code and data structures that minimize the side
effects of changes, and documentation that corresponds to the code and is
modular in nature. Features that contribute to testability include software
structures that isolate the effects of changes, program instrumentation, and
complete, accurate documentation. Features that contribute to portability
include device independence, use of higher order language, and minimization of
interfaces with other systems. Appendix C identifies more specifically a
variety of features that contribute to software maintainability.

5.2 IV&V's Potential for Impro?ing Maintainability

Software maintenance is rarely performed by the original programmer. More
typically, a person unfamiliar with the program must study the code and its

- documentation unti] he understands the program well enough to make the rieeded

changes and to devise test cases to requalify the program,

The similarity of this process to the IV&V process is striking. The IV&V
analyst must study the documentation and code until he becomes sufficiently
familiar with the program to follow the programmer's thought processes, detect
logical flaws, identify situations that the programmer may have failed to con-
sider, and devise test cases to thoroughty test the program.

The objectives of the maintenance programmer and the IV&V analyst differ. The
maintenance programmer wants to modify the program, the IV8V analyst to eval-
uate it. The similar preparations that both must make to perform these funce
tions, however, suggest that the IV&Y analyst is in an excellent position to
assess software maintainability, The following paragraphs explore this hy-
pothesis by addressing each of the four major aspects of maint{inability and
the special case in which IV&Y is applied to a maintenance effort. A conclud-
ing paragraph - discusses indirect effects of IV&V's assessment of software
reliability.

5.2.1 Understandabitity
Understandability is as crucial to the IV&V analyst as it is to the mainte-

nance programmer. I[n the analyst's efforts to become familiar with §he
requirement and design specifications, he notices incomplieteness, inconsise

7

#eiTl, G., and Gold, H. ., Software Acquisition Manayement Guidebook: Soft-

ware Quality Assurance, ESD-TR-77-255, Aug, 1977.

-65-

tencies, inaccuracies, ambiguities, unclear presentation, and other problems
of this type because they hamper his own efforts to understand the software
system. Similarly, during the detailed code analysis that is central to IV&V,
such problems as inadequate or incorrect comments, unstructured or unmodular
code, complex constructs, and obscure logic present the IV&V analyst with the
same difficulties they would present the maintenance programmer. Assessing
understandability is therefore a natural part of IV&V the findings can be
reported if the program office so chooses.

5.2.2 Modifiability

According to Peercy, modifiability consists of understandability plus expanda-
bility, where expandability is the extent to which a physical change to in-
formation, computational functions, data storage, or execution time can be
easily accomplished. Software features that contribute to expandability
include a reasonable margin of storage space and processing time, extra fields
in data files, parameterization of constants and data structure s1zes, and
documentation that will easily accommodate change.

Although few if any IV&V projects have been chartered to evaluate software for
modifiability, anomalies concerning this trait are often reported under the
category "poor programming practices," and the potential to expand this eval-
uation certainly exists. Data bases that are being examined for accuracy
could be simultaneously evaluated for expandability. Code being examined for
correctness and efficiency could also be evaluated against a set of criteria
known to enhance expandability. ‘Documentation being examined for correctness,
completeness, and consistency could also be evaluated for the type of modu-
larity and traceability that enhance expandability. Drawing from a list such
as that given in Appendix C, a set of explicit modifiability criteria could be
developed against which the software was to be evaluated. Manual analyses of
code, data, and documentation would then include these criteria along with
those normally used. Special tools to evaluate certain features might also be
developed. :

5.2.3 Testability

Peercy defines testability as understandability plus instrumentation, where
instrumentation is the extent to which software contains embedded test aids or
has been implemented to allow the use of external test aids. Embedded aids
might include assertions or execution monitoring statements; external test
aids might include drivers, monitors, simulators, or tect case generators.

An important aspect of IV&V requirements verification is evaluation of each
requirement for testability. Considered in the cvaluation are the clarity,
quantifiability, and feasibility of each requirement. While evaluation of the
design and code for testability has not traditionally been included in the
IV&V charter, here again, the potential exists. If the code has been instru=-
mented with assertions indicating expected conditions on inputs, outputs,
program variables, or other program aspects, the analyst could evaluate
the completeness and quality of these embedded test aids. [f it does not con-
tain such instrumentation, recommendations could be made for ways to include
assertions or to accommodate external test aids. Software structures could be

<56

evaluated for their ability to isolate the effects of change. These and other
testability criteria could be developed, and deviations could be reported in
anomaly or other types of reports.

5.2.4 Portability

Portability contributes to maintainability by reducing the need for modifica-
tion when new equipment is introduced or when the software is transferred to a
new environment. Important aspects of portability are the use of a higher
order language and minimization of equipment dependencies. Even when these
measures are adopted, however, portability is difficult to achieve. Differ-
ences in computer word sizes make compatibility between some systems very
difficult to achieve. Small segments of assembly language tend to appear in
programs that are supposed to be written in higher order language. Higher
order languages, despite their claims of portability, have been adapted to
particular computer systems.

From the point of view of IV&V, portability is a trait that can be evaluated
quite effectively. Guidebooks exist (e.g., Reference 20)* .which identify
higher order language constructs that are truly hardware independent. Cri-
teria can be established to evaluate device independence. Evaluation of code
for portability could be included as part of the code verification process.

h.2.5 IV&V of Maintenance Efforts

The preceding sections were concerned with software development. Another
aspect of the maintainabilfity issue is ensuring that software undergoing
maintenance does not become less maintainable than it was before. :

In his survey of software maintenance technology (Reference 21),t Donahoo
cites the following four issues as the major concerns in software maintenance:

1) Lehman's "Law of Increasing Entropy": The complexity of a pro-
gram tends to increase with each modification, making mainten-
ance more difficult each time, unless specific effort is applied
to stop this trend

2) The tendency for correction of one problem to cause others to
appear

3) The guestion of how much of the program to retest after modifi-
cation

-

*Georghiou, D. L., Guidelines for Programming in Portable Fortran, Logicon
Report No. DS-R78069, Sept. 1978,

tDonahoo, J. D., A Review of Software Maintenance Technoloyy, RADC-TR-80-13,
Feb. 1980.

-57-

it s e AN R T R BT TP snmecv omirmsees

4) The tendency for program documentation not to be updated to re-
flect the changes made

Issues 2 and 3 are concerned with the reliability of the modified software.
These issues are always addressed in the IV&V of maintenance efforts. Issue
4, concerned with continued maintainability, is also inherent in the IV&V
process, through the documentation verification activity. While Issue 1 has
not traditionally been included in the IV&V charter, it has been addressed
informally with the reporting of poor programming practices. By directing the
design and code verification activities to report all unwarranted increases
in complexity, such as those caused by artificial localization of changes, the
program office could focus attention on this problem and ensure that the
resulting software was not only as reliable, but also as maintainable as it
was before.

5.2.6 Indirect Effects on Maintainability

IV&V's evaluation of software reliability has the added effect of enhancing
the maintainability of the subject program. The improved reliability of the
software makes it less likely to require modification once in the operational
environment, and the early detection of anomalies provided by IV& allows time
for effective redesign rather than "kluge" solutions, which can make the soft-
ware overly complex, nonmodular, and difficult to understand.

5,3 Project Results

Data from the projects surveyed provided answers to the following questions:

o How many of the anomaly reports submitted by IV&V had a direct
effect on software maintainability?

e What development materials did they involve?

o What types of problems did they report?

e What were their severity ratings?

¢ What aspects of maintainability would have been affected?

¢ What were the indirect effects resulting from reliability eval-
uation?

The following paragraphs discuss these issues.
5.3.1 Number of Anomaly Reports Affecting Maintainability
Of the 1575 anomalies reported on the IV&V projects, 854 were concerned with

software maintainability. The number of these anomalies on each project was
as follows:

«H8w

9 Project 1 66
e Project 2: 135
¢ Project 3: 371
® Project 4: 97
¢ Project 5: 185

Many of these anomalies had maintainability as one of several effects. Such
anomalies were usually reported for some reason other than maintainability and
had maintainability as a secondary effect. It was instructive, therefore, to
single out the anomalies that had maintainability as their only effect. There
were 347 such anomalies, broken down as follows:

Project 1: 10
Project 2: 9
Project 3: 211
Project 4: 47
Project 5: 70

This breakdown shows dramatically the results of different project objectives.
Projects 1 and 2 were concerned almost solely with software reliability. They
reported maintainability anomalies only when these might result in reliability
problems in future program versions. Project 3 performed extensive documenta-
tion analysis aimed at detecting maintainability problems. Project 4 was
discouraged from reporting documentation problems in anomaly reports. Project
prerformed some documentation analysis, but had limited emphasis on maintain-
ability.

0f the 854 anomaly reports cited above, those that were accepted by the pro-
gram office and acted on by the developer had a direct effect on software
maintainability. Figures 17 and 18 indicate program office acceptance of the
two types of maintainability reports. Figure 17 shows that for all maintain-
ability reports, an average of 90% were accepted, 3% were rejected, 0% were
withdrawn or superseded, and for 6% acceptance was unknown., Figure 18 shows
that for anomaly reports concerned solely with maintainability, an average of
94% were accepted, 1% were rejected, 0% were withdrawn or superseded, and for
5% acceptance was unknown. Projects 3 and 4 had 100% acceptance of maintain-
ability-only reports. The projects that were less concerned with maintain-
ability had somewhat lower rates. Even on these projects, however, acceptance
was high enough to indicate the overall validity of the findings.

Figures 19 and 20 indicate the action taken on the two types of maintainabili-
ty anomalies. Figure 19 shows a pattern similar to that observed for relia-
bility anomalies, namely, Projects 1-4 exhibiting similar profiles and Project
5 being markedly different due to the experimental nature of the development
project. For Projects 1-4, an average of 80% of the anomalies were acted on,
9% were not, and 10% had resclution stil) open or unknown. Figurs 20 shows
the resolution of anomalies that had maintainability as their only effect.
Projects 2, 3, and 4 show high rates of corrective action; Projects 1 and 5
show lower rates. Overall, 79% of these anomalies were acted on, 10% were
not, and resolution of 11% was still open or unknown at the time of the
study. Thus, while maintainability anomalies may have had a lower priority

~50.

Ajlliqeutejulel YliM pouaaduo) siuaoday Ajewouy S0 adueldsddy /1 a4nbi4
s3oafodd 11v G 399fou4q ¥ 393load € 303fouy 2 393fo4y 1 303l0ayg
| e— -
"L 2 n o R
n
o
n n -0l 3
0
! 2
- 02 <
[£-]
<
I Dt =
=Y
-
-0 2 27
> -
a 1
Z 38
- [}
<
>
- 09 w
o 2
D
=4
-08 S
g
2
v
‘ -06 S
umowun N v rm.
papoasdadng /uMeAPYILM M - 001 o
pajoalay :¥ o
u933L4M se pajdasoy :y i
: A3y ;
H
;

R

e

AT AT A i P s and e R s

st oo zeann

A3iliqeutejuLely YyiLlm AL3|0S paudsduo) sihoday Ajewocuy JO 3due3dasdy -1 a4«nbiy

sy0afoud [LY G 309fo0ad v 108fouy ¢ 309foud Z 309loayg 1 303f04g 5
m gl M d nom e nMma n A TR -
2 m :
M n , 2
n roto3
2
[T]
. -
- 0¢ =1
N 3 =
k=]
08 3
d [nd
4 @
b 5
: - 0% m
7 @
_4 - 05 w .
: <
- 09 >
3
=1
: S
; 0
3 n
=]
‘ v v - 08 3
3
2
U v - 06 g
v umouyun :n | 001 wu
: papas4adnS/umeapyitm MV v e
: pajssfay :y pd
US31LJ4M Se pajdaddy iy ’ -
Koy

AlLlLlqeutejulel yjlLM Psudsadu0) SIL|BWOUY JO UOLIN[0SIY 6T a4nbLd

p-1 s109fodq s3oafoud Lly G 323loud y 309foad € 399f04dg 2 3%2fcuad 1 328foug

| w
n/0 L 3
N n/a e
- =
n/o N n/0 /0 oz
N N n/o " N o
n/o0 - 02 S
=
2.
- 0f o
b+
=1
=
N - oy =

v mm mm

~ 0§ = '
Q
3
=,
= 09 mm
ol
- 0L m
v v mw

- 08
v v v S
v)
- 06 3
1]
a
umowjun/uado uoLlIniosay :n/o0 ~- 001

uo pajoe 30N mz
uo pajoy
)|

L MRl DI iy i LA D T T i

R AN LA AT NI € N At e iy Ve

g L AV AR AN

A

SN

JrazEuEtsel

AIL11GRULRIULRY YILM ALS|OS PaU4aIu0) S3L|eWouy O uoiiniosay -0z a4nbtj

$309f04d L1V G 339foud ¥ 108fo4d € 323foud 2 323fo4d 1 393foud
n/ol_ | LIy n/¢
N n/o
N 01
n/o N
v -Ge.
70| [V -0t
N - O
n/o
- 05
- 09
- 6L
v v - 08
- 06
umowyun/uado uoLiniosay :n/Q
uo pajoe jJoN N v i
uo pojoy vy v 001
: KoYy

309f04g U0 pajuoday sof|ewouy ALug-A3LLiqeulelujel Jo abejuaduay

-63-

than those concerned with reliability, they were considered important enough
on three of the projects to have a high rate of corrective action.

The total number of anomaly reports that were concerned with maintainability,
accepted as valid, and acted on by the developer was 645. These reports rep-
resent the direct contribution of IV&V to the maintainability of the subject
programs. The breakdown of these anomalies, hereafter referred to as “cor-
rected maintainability anomalies," was as follows:

Project 1: 48
Project 2: 108
Project 3: 330
Project 4: 82
Project 5: 77

Singling out the anomalies that affected maintainability only, the total was
276, broken down as follows:

Project 1: 3
Project 2: 7
Project 3: 207
Project 4: 45
Project 5: 14

These anomalies are hereafter referred to as “"corrected maintainability-only
anomalies." The remainder of the analysis is concerned with these two sets of
ancmalies. ‘

5.3.2 Anomaly Location

Anomalies affecting maintainability may be found in requirement specifica-
tions, before-code and after-code design specifications, code, user documenta-
tion, and other materials. Figure 21 shows the number of corrected maintain-
ability anomalies and corrected maintainability-only anomalies found in each
of these materials.

Over half of the corrected maintainability anomalies were in requirement
specifications. Correction of these anomalies enhanced mnaintainability by
making it easier to understand the functions and organization of the proygram
and to devise new test cases. A third of the anomalies were in the before-
code and after~code design specifications. Correction of these problems made
it easier to grasp the program design and to deterwine how to wake the needed
changes and devise test cases. Twelve per cent of the anomalies were in the
code itself. Their correction resulted in code that was traceable to require-
ments, more efficient, less complex, better commented, and casier to under-
stand, modify, and retest.

5¢3.3 Anomaly Categories

Table 8 indicates the number of corrected maintainability anomalies found in
each anomaly cateyory. The left-hand set of figures applies to ell such

puno auoM saljeuiouy A3L[LgRULRIULRY Pa3DB4L0] YOLYM U] S|Et43d3ey Jusmdo{anag -1z aunbiyg
G 399foud ¥ 3089l0ud € 393foud 2 393foud 1 323f0ud
; : 5 P i I
“ a 3 g
; -02 =
5
=4
2
- 0%
3 S
,, g
-09 3
3
[2]
4
.lmuw Q
=
2 4
3
- 001 m..m)
=
£
-0l =
g
-0yl =
: o
4 A
.N - 091 =
_ v
saljewouy ALuQg-A3LliqruLeluley pajdou40) : B =4
uorjedty1dads ubLsag o9pod-J4aply : <@ -081
apoy w 3
g uorjesLj1oads ubLsag apod-a4043g : i iy
uoL3eoL4ioads sjusuweLLnbay Y 002 o
A3y
~0¢¢

Table 8'. Number of Corrected Maintainability Anomalies in Each Category

Corrected Maintainability Corrected Maintatnability-

Anomalies Only Anomalies
Project _Project
Anomaly Category I Z 3 ¢ 3 M1z 31 ¢35
Requirement Specification Anomalies
Rl. Incorrect Requirements 14 49 66 15 1 145 - 1 18 12 -- 3
R2. Inconsistent Reyuirements 9 9 13 7 17 65 o= -) 1
R3. Incomplete Requirements 14 22 46 27 J e - - 23 14 - 3
R4. Other Reyuirement Problems 4§ 13 1 3 - 3N - . 2 2 - 4
R5. Presentation; Standards Compliance -- _1 4 1 -- 6 -- - 1 1 == 2
Total B TR O OT AW ST/ I
Before-Code Design Specification Anomalies
Dl. Requirement Compliance - - 4 . 1 § en e ee e e e
D2. Choice of Algorithm, Mathematics . em me em 7 I R T
D3. Sequence of Operations R 5 § ca e ee e e e
D4. Data Defipition - e e s 1 | e . T S
05. Data Handling B S V- S - S T T
U6, Timing, Interruptibility - ee e es 2 2 ev e e am ee s
V7. Interfaces, (/0 e m= e ew mm e ee we me we e ==
V8. (ther Design Problems - - 1 - 1 A R R 1
09. Presentation, Standards Compliance =« == =~ == <= == ex <o =v ~e es e~
Total - - TEF TSN Y ST TS
Code Anomalies
Cl. Requirement, Design Compliance 31 13 8 1 2 2 - s aa - 2
Z¢. Chuice of Algorithm, Mathewmatics 2 K R S - | S 1
C3. Sequence of Operations - .- 1 = .- I PR 1
C4, Data Lefinition - 3 1 I . 7 - 2 ee ee e 2
C5. Data Handling 1 | ST S 1 3 i | TR 1 3
C6. Timiny, Interruptibility = me wm am sa ms am ws oam ws wm =s
C7. Interfaces, 1/0 R 1 - T
C8. Other Code Problems 1 2 10 1 11 25 ee wn en e we e
€9. Presentation, Standards Compliance .- 4 _2 4 1 11 .. 2 2 4 1 !
Total TR R YT T3 T T
After-Code Design Specification Anomalies
k- 3 Pl. Ingorrect Documentation - = 23 4 11 M . . ¥ N W
3 3 P2. Inconsistent Rocumentation e e 6 1 e T s e & S t
5 P3. Incomplets Documentation - e= § 4 1 8 - - 857 4
P4, Other Documentation Problems -~ = 10 I -~ 1} - - 1 1 .. B3
‘9 PS. Presentation, Standards Compliance o= == 96 _=» =« 56 oo =v 98 . .. 56
Total - - T TI? T’ T® YOS YRR IR YW1
“3 User Documentation Anowalies . N
3 >
: : Other Anomalics I AL U S L L . S LI
¢ Total Anomalies in All Cateyories @ W8 N0 R oM Rs 3 W G 1

e

-6~

Bl o Sl b4 g B s o treitany

anomalies; the right-hand set applies to the anomalies concerned with main-
tainability alone. .

There were 349 requirement specification anomalies that would have affected
maintainability if they had not been corrected. Most prevalent among these
were incorrect requirements, which accounted for 42%, and incomplete re-
quirements, which accounted for 32%. Seventy-five of these anomalies had
maintainability as their only effect. These anomalies, reported only on
Projects 3 and 4, concerned cases in which the requirement specifications had
not been updated to reflect the program as implemented. Again, the two most
prevalent categories were incorrect and incomplete requirements.

Dasign verification performed by Projects 3 and 5 disclosed 36 anomalies that
would have affected maintainability if they had not been correct.d. Most
prevalent were errors in the design specification's descriptions of program
data handling. Only one of the 36 anomalies had maintainability as its only
effect. This aromaly concerned a questionable design feature to be incor-
porated in a future update.

Seventy-nine code anomalies would have affected maintainability if they had
not been corrected. Most prevalent were cases in which code was not traceable
to the requirements or design and cases of inefficient or extraneous code,
shown under Category C8. CEighteen of the code anomalies had maintainability
as their only effect. Most prevalent here were cases involving incorrect and
incomplete comments and violations of development practices. Also included
were several latent arrors, that is, cases in whicn the program was cuded in-
correctly, but happened to work satisfactorily in the current version.

There were 182 corrected maintaindbility anomalies in after-code desiqn spec-
ification, all having maintainability as their only effect. Most prevalent
were instances of incomplete documentation. Problems with presentation of
information and incorrect documentation were also gommon.

5.3.4 Anomaly Severity

Severity ratings for all five proiects were based on the impact ar anomaly
would have on program performance. As a result, anomalies that had as their
only effect decreased smaintainability were almost always rated Low. The few
exceptions resulted from the fact that sevority ratings were assigned to
entire ancmaly weports, rather than to parts thereof, and maintainadbility
anomalies occasionally received 2 higher severity rating by association with
anoimaliey effecting reliability, Severity ratings for t-e snomalies that had
maintainability as one of several effects are not meaninyful hove because the
ratings were yenerally assigned on the basis of other effects.

5.3.5 Maintainability Attributes Affected

section 5.1 identified as the four basic attributes o' myiniainable software
understandability, modifiability, testability, and portability. it is in-
teresting to ask which of these attributes were affected by the detection and
correction of maintatnability anomalies on the five V8V projects.

T
-

P R T
o

R g,

The four basic attributes are not mutually exclusive. As described in Sec-
tion 5.2, modifiability consists of understandability plus expandability;
testability consists of understandability plus instrumentation. Any anomaly
report that contributes to understandability therefore contributes to modifia-
bility and testability as well.

To determine more precisely the effects of the maintainability anomalies, each
one was examined in terms of its effect on understandability, expandability,
instrumentation, and portability. These traits are mutually exclusive and
therefore more readily analyzed.

The answer in almost all cases was understandability. Maintainability anom-
alies were almost universally concerned with:

o Documentation that did not describe program requirements or de-
sign completely or accurately

o Code characteristics that would make it difficult for a main-
tenance programmer to grasp program logic or to trace the logic
to requirements or design

Only 10 anomalies had an effect other than understandability. These anom-
alies, concerned with poor programming practices or latent errors, affected

expandability. They would make changes more difficult than necessary or make

it possib1eufor program changes to have unexpected side.-effects.

The predominant effect of IV& on software maintainability was therefore in-
creased program understandability, and therefore enhanced modifiability and
testability as well. The analysis showed that IV&V can be an effective tool
for increasing software maintainability.

5.3.6 Indirect Effects of Reliability Evaluation

Section 4 described 748 reliability anomalies corrected as a result of IV&V.
Correction of these anomalies improved not only program reliability, but .also
program maintainability. By detecting the 748 problems before the software
went into the operational environment, IV&V helped to prevent the need for
corrective maintenance of the software. By detecting 447 of the problems be-

fore development testing, IV&V allowed the developer extra time for anomaly -

correction, reducing the possibility of poorly designed corrections that could
hinder maintenance efforts.

~68-

The four basic attributes are not mutually exclusive. As described in Sec-
tion 5.2, modifiability consists of understandability plus expandability;
testability consists of understandability plus instrumentation. Any anomaly
report that contributes to understandability therefore contributes to modifia-
bility and testabiiity as well.

To determine more precisely the effects of the maintainability anomalies, each
one was examined in terms of its effect on understandability, expandability,
instrumentation, and portability. These traits are mutually exclusive and
therefore more readily analyzed.

The answer in almost all cases was understandability. Maintainability anom-
alies were a.most universally concerned with:

¢ Documentation that did not describe program requirements or de-
sign completely or accurately

¢ (ode characteristics that would make it difficult for a main-
tenance programmer to grasp program logic or to trace the logic
to requirements or design

Only 10 anomalies had an effect other than understandability. These anom-
alies, concerned with poor programming practices or latent errors, affected
expandability. They would make changes more difficult than necessary or make
it possible for program changes to have unexpected side effects.

The predominanu effect of IV&V on software maintainability was therefore in-
creased program understandability, and therefore enhanced modifiability and
testability as well, The analysis showed that IV&V can be an effective tool
for increasing softwere maintainability. .

5.3.6 Indirect Effects of Reliability Evaluation .
Section 4 described 748 reliability anomalies corrected as a result of IVAY,
Correction of these anomalies improved not only program reliability, but alsh
program maintainability. By detecting the 748 problems before the softwarb
went into the operational environment, IV&V helped to prevent the need for
corrective maintenance of the software. By detecting 447 of the problems be=
fore development testing, IV&V allowed the developer extra time for anomaly
correction, reducing the possibility of poorly designed corrections that could
hinder maintenance efforts.

R TR I

The four basic attributes are not mutuall i i '

A _attrib . y exclusive. As described in Sec-
Elon §.2, modlf]ab111ty consists of understandability plus. expandability;
estability consists of understandability plus instrumentation. Any anomaly

report that contributes to understandability therefore contributes tc r
bility and testability as well. y | ributes tc modifia

To determine more precise1y thg effects of the maintainability anomalies, each
one was examined in terms of its effect on understandability, expandability,

instrumentation, and portability. These traits are mutually exclusive and
therefore more readily analyzed. '

Thg answer in almost all cases was understandability. Maintainability anom-
alies weire almost universally concerned with:

e Documentation that did not describe program requirements or de-
sign completely or accurately

e Code characteristics that would make it difficult for a main-

tenance programmer to grasp program logic or to trace the logic
to requirements or design

Only 10 anomalies had an effect other than understandability. These anom-
alies, concerned with poor programming practices or latent errors, affected
expandability. They would make changes more difficult than necessary or make
it possible for program changes to have unexpected side effects.

The predominant effect cf IV& on software maintainability was therefore in-
creased program understandability, and therefore enhanced modifiability and
testability as well. The analysis showed that IV& can be an effective tool
for increasing software maintainability.

5.3.6 Indirect Effects of Reliability Evaluation

Section 4 described 748 reliability anomalies corrected as a result of IV&v.
Correction of these anomalies improved not only program reliability, but alsh
program maintainability. By detecting the 748 problems before the software
went into the operational environment, IV& helped to prevent the need for
corrective maintenance of the software. By detecting 447 of the problems be-
fore development testing, IV&V allowed the developer extra time for anomal

correction, reducing the possibility of poorly designed corrections that could
hinder maintenance efforts. :

RN

o Hypothesize for the selected factors which ones would be af-
fected positively and which negatively by IV&V

e Tie in study results to test the hypotheses with actual data
and to quantify results where possible

The results of the first three steps are given in Table 9. The following
paragraphs discuss these results.

6.1 Factors Affecting Development Cost/Productivity

Table 9 identifies 125 cost/productivity factors described in the literature.
They have been divided into 11 basic categories:

The nature of the software to be developed
Special requirements imposed on the software
The quality and stability of the regquirements
The quality and stability of the design

The quality and stability of the code
Personnel and organization

Development methodology used

Development facilities available

Project management

Amount of nonproductive activity performed
Cost factors unrelated to productivity

The left-most column identifies one or more references in which each factor
was found. When more than two refarences cited a given factor, only the first
few encountered were included in the table.

6.2 Factors Affected by IV&V

The right-hand columns of Table 9 present the study's hypotheses as to the
potential effect of IV&Y on each of the cost/productivity factors. The pos-
sible responses are:

e ‘“Positive," meaning that IVAV has the potential to increase
programmer productivity or decrease cost with respect to the
factor

¢ ‘“Negative," meaning that IV&V has the potential to decrease
programmer productivity or increase cost with respect to the
factor :

¢ "None," meaning that little or no effect could be envisioned
under normal circumstances

The most striking finding is that for 90 of the 12% factors, IV&V was consid-
ered to have no effect at all. This finding shows that the benefits of [V&Y
can be obtained without placing a significant amount of overhead on the devel-
optent process. Ruled out were all factors under “the nature of the software
to be developed" and most factors under “special requirements imposed on the
software," “personnel and organization," “development facilities," and “costs

-70-

Table 9. Factors Affecting Development Cost/Productivity

Potential Effects of IV&V
References Factor Positive Negative None

A. The Nature of the Software to be Developed

23, 24 A-1. Type of application X
23, 25 A-2. Degree of innovation required X
25, 26 A-3. Size of the software X
8, 27 A-4. Data base size/complexity X
25 A<5. Number and complexity of 1/0 formats X
23 A-6. Data management techniques to be used X
23 A-7. Multiple-site installation ‘ X
15, 25 A-8, Extent of decentralization and number X
of interfaces
23, 27 A-9. Real-time requirements X
28 A-10, Reimplementation of existing software X
25 A-11, Nunber of other components and sub- X

systems being developed concurrently
as part of the system

B. Special Requirements Imposed on the Software

23, 26 B-1. Quality requirements

Reliability requirements
Maintainability requirements
Efficiency requirements
Integrity requirements
Usability reguirements
Testability requirements
Portabi ity requirements
Reusability requirements
Interoperability requirements
Transportability requirements

L N BN X 2 W I N W I
>c IC 2T DC 2 JC T JC I D€ D

23, 26 8-2. Requirements for spacial displays and
interfaces with special syuipment

23 B-3. Testiny requirements ‘ X
8, 27 B-4. Documentation requirements X

27 B-5. Percentage of code to be delivered X

-71-

R P Y

Table 9. Factors Affecting Development Cost/Productivity (continued)
Potential Effects of IV&V
References Factor Positive Negative None
25, 27 B-6. Overall constraints on program design X
23, 27 B-7. Constraints on program size X
23, 27 B-8. Constraints on program speed X
8 B-9. Requirement to install the system at X
a site other than the development site
C. Quality and Stability of the Requirements
27 C-1. Customer experience:
0 With the application X
0 With data processing X
23, 27 C-2. User participation in requirements X
definition
25, 217 C-3. Programmer participation in require=- X
ments definition
23 C-4, Effectiveness of communication among X
user, customer, developer, maintainer
8, 23, C-5. Coupleteness, accuracy, and clarity X
26, 29 of requirement specifications
23, €-6. Lovel of change In requirements X X
during development
23, 30 C-7. Phase in which requiroament changes X
occur
0. QQuality and Stability of tie Design
23 D=1, Accuracy of translation from require- X
manats to desiygn
8, 23 D=2, Quality of the design X
15, 23 U-3. Anount of changes to the destign X
3, U, N V=4, Timing of desiyn chanyes X

Table 9. Factors Affecting Development Cost/Productivity (continued)

Potential Cffects of IV&Y

References ' Factor Positive Negative None

£. Quality and Stability of the Code
23 E-1. Accuracy of translation from design to

code

8, 23 E~Z2. Quality of the coded program
15, 23 £-3. Amount of code changes needed
8, 27, 30 E-4. Timing of code changes

F. Personnel and Organization

F-1. Development team experience
27, 28, 31 o Witn similar applications X
23, 217 e VWith the computer hardware X
21 e With the language to be used X
15, 26 F-2, Programmer ability X
25, &7 F-3. Programmer participation in require- X
ments definition

25, 26, 29 F-4, Amount of training required X
28, 29 F=5, Development team organization and size X
8, 25 F=6. Development team stability X
3l F-7. Development team worale X
29 F=3. Development team cooperation X
15 ¥=9, Development team objectives
26 F-10. Appropriatenass of man-loading X
31 F«1l. Avatlability of personnel when needed X
23, 26 F=12. Percentage of support personnel

G. Vevelopiment Methodology
23, 24, 20 G-1. Programning lanyuage used
23, 26 G=2. Use of wodern programaing practices

73

RS

I
Table 9. Factors Affecting Development Cost/Productivity (continued)
Potential Effects of IV&V
References Factor Positive Negative None
27, 32 ¢ Top-down development X
30 e Program design language X
23 9 HIPO diagrams X
15, 27 ¢ Structured programming X
18, 23 ¢ Programming support library X
23, 27 e Chief programmer team X
27, 33 o Design and code inspection X
33 ¢ Unit development folders X
G-3. Compliance with well-defined X
standards
8 G-4. Quality assurance practices followed X
33, 34 G-5. Configuration management of the soft- X
ware and documentation
15, 33 G-6. Quality of test plan X
23 G-7. Avoidance of hands-on batch testing X
31 G-8. Debugging style X
8, 25 G=9. Errvor reporting and correcting pro- X X
cedures
H. Development Facilities
H-1. Availability of computer hardware
23 o Late selection of target computer X
15, 23 o C{oncurrent development of hardware X
and software
25 H-2. Suitability of target computer
23 o Sufficient speed X
1%, 23 o Sufficient memory size X
23 H-3. Developuent and target computers X
differ
25, 21 H-4. tase of access to compuicr facilities
23 e Ust ot operational site for devel- X
opuitent »
23 ¢ Use of another organization's X
developument facilities
25 ¢ Need to share computing Yacilities X
8 ¢ Proximity of computing facilities X

Table 9. Factors Affecting Development Cost/Productivity (continued)

Potential Effects of IV&V
References Factor Positive Negative None

8 ¢ Proximity of computing facilities X

H-5. Complexity of computer facilities

23 o Number of different development X
Yocations
25 o Number of different computers

H-6. Computer response time

15, 28 ¢ Mode of operation: batch vs. X
on-line
8 o Computer throughput rate X
25 o Time lost to maintenance X
25 o Probability of computer overload X
. 29, 31 H-7. Computer system reliability b
. 25, 29 H-8. Computer sytem usability b
H-9. Support software and development
. tools:
4 23, 25 o Availability when needed X
3 29, 3 e Quality ° X
.?l~ 29 H-10. Adequacy of technical reference X
2 materials
4 29 H-1l, Suitability, comfort of work X
4 envi ronment
.9 25, 29 H-12., Cooperation and responsiveness of X
; support services
f 21 H«13. Classified security eavironment X
25 H-14, Availability of duta for the data S
base ,
l. Angunt of Non-Productive Activity Performed
15, 25 l«l. Travel X
1-2. Meetings, interfaces
24, 26 e Internal X
27 o With customer X
25 ¢ With other agencies X

N
eqente O
< T

Table 9. Factors Affecting Development Cost/Productivity (continued)

Potential Effects of IV&V

References Factor Positive Negative None

30 1-3. Documentation preparation | X

8,22 [-4. Training : X

24 I-5. Company business X

22, 24 1-6. Paperwork X

24, 25 I~7. Delays for needed materials, compon- X
ents, concurrence, etc.

30, 8, 6 [-8. False starts; need for development X

30, 35, 36 [.9, Software defect removal X

Jo Project Management

' 8 J=1. Type of contract X
! - 26, 29 J-2. Feasibility of schedule X
1 8, 26 gl Allocation of resources to each phase X
23, 26 J-4, Completion of activities within their X
allotted phase
23, 3 J-5, Cffectiveness of cost monitoring X
3 24, 29, 31 J=6, Effectivenss of progress monitoring X
; 24, 29 J«7. Lifectiveness of personnel management X
il 8, 34 J=-8. Adequacy of formal reviews and audits X
' i Ke Costs Unrelated to Productivity
\‘ K=1. Computer hardware X
23, 25 K-2. Secondary resources (computer tiwe, X
documentation reproduction, travel,
etc.)
25 K-J. Equipment, office space X
25 K-4, Simulation and test factlities X
25 K-5. Special security-related equipment X

<76

0000 Bl S A RS2 et A
o) L p

i e ot LA T

LI

unrelated to productivity." For these factors, the presence of an IV&V agency
either made no difference at all, or could make a difference only in unlikely
circumstances. -

0f the remaining factors, IV&V was considered to have a potentially positive
effect on 27 and a potentially negative effect on 9. On one factor--error
reporting and correcting procedures--both a positive and negative effect
could be foreseen. The following paragraphs discuss these effects.

6.2.1 Positive Effects of IV&V

The study hypothesized a positive effect on 27 of the cost/productivity fac-
tors. These factors and IV&V's effects on them are discussed below. Related
topics have been discussed together for brevity.

6.2.1.1 Quality and Stability of Requirements: In Reference 8, Finfer
states that the stability and quality of requirement specifications may be
the key factor in programmer productivity. Supporting this position is Doty's
software estimation guide (Reference 23), which states that:

e Vague operational requirements can be expected to decrease pro-
ductivity by 35% on command and control appiications and 50%
on scientific applications.

¢ The effects of changihg requirements can be as high as a 95%
decrease in programmer productivity.

Equally dramatic are figures cited by Wolverton (Reference 30), which indi-
cate that a requirement defect not corrected during the requirements defini-
tion phase is:

e 2-1/2 times more costly to correct during design
e 5 times more costly to correct during coding and checkout
e 36 times more costly to correct during test and integration

Improving the quality of requirement specifications is one of the key objec-
tives of IVaV. Reguirements verification focuses on the c¢larity, complete-
ness, correctness, and consistency of requirements, It can point out omise
sions; identify unfeasible, questionable, and ambiguous requirements; detect
errors; point out inconsistencies; and identify problems in the way that the
requirements have been documented. The increased visibility provided by this
analysis can improve communication amony the user, customer, and developer;
help the user to define his requirements more precisely so that later changes
will be unnecessary; and result in vastly improved requirement specifications.
By performing this verification in parallel with the requirements definition
process, IVAV can ensure that requirement changes are made early, preventing
the major cost impacts associated with later changes.

5.2.1.2 Quality and Stability of the Design: According to Doty (Reference
23):

o 060% of &ll errors discovered in testing are caused by faulty
design.

® These errors can result in cost increases of up to 100%.

Emphasizing the importance of early detection, Wolvert T i

| : : , on (Reference 30) cites
flggres stating that a design change costs, on the average, $977 to correct
during code and checkout and $7136 during test and integration (1975 figures).

The_design verification performed as part of IV&V can have a major impact on
design quality and stability. It ensures that all requirements have been
properly translated into design and that all functions included in the design
are traceable to approved requirements. It evaluates the choize of algo-
rithms, the design logic, the data definitions, and all aspects of the design.
By performing this verification during the design phase, IV&V can detect
design errors before they are implemented in code and improve the quality of
the design materials used as input to the coding phase.

6.2.1.3 Quality and Stability of the Code: The coding process almost al-
ways involves some detailed design beyond that specified in the design mate-
rials. As a result, new faults can be introduced at this stage. Figures
cited by Finfer (Reference 8) indicate that coding errors not detected until
the testing stage can be from 2 to 5 times as costly to correct as those

detected during coding and checkout. Once again, early detection decreases
cost.

The code verification activity of IV&V is specifically designed to detect
anomalies in preliminary versions of code. It relies upon inspection rather
than program execution to ensure agreement between the design and code and to
check for faults in logic, data definition, data usage, interfacing, and so
on. By detecting such problems before the program has been integrated for
testing, IV&V can decrease the cost of error correction.

This approach is substantiated by Shooman and Bolsky (Reference 6). In a
study of error detection methods, they found that a large percentage of faults
can be found by code inspection alone and that this method is cheaper by a
ratio of 25 to 1 than techniques involving machine testing.

6.2.1.4 Development Team Objectives: In Reference 37,* Weinberg reports
that the objectives of a software development team exert a significant influ-
ence on programmer productivity. In his experiments, development teams were
given the same program specification but were assigned different criteria for
success, namely, speed of program execution for one team, speed of program
development for the other. The results showed that the different objectives
produced markedly different results.

The application of this principle to IV&V 1ies in the program office's abil-
ity to foster an attitude of cooperative competition between the developer
and the IV& agency. [f the developer knows that late deliveries, incom-
pleteness, inconsistency, and incorrectness are going to be reported by the
IV&V agency, he will tend to be more careful to meet deadlines and more
thorough and careful in his work, resulting in ultimate productivity gains.

*deinoerg, G. M., "The Psychology of Improved Programming Performance," Data-
mation, Nov. 1972.

-78-

-

gt St B2

Bt or o s g oz e
B S e R gl e ont i

6.2.1.5 Programming Language, Development Practices, and Configuration Man-
agement Procedures Used: ihe programming language and deveiopment and config-

uration management practices used on a project have been shown to have a sig-
nificant effect on programmer productivity. In Reference 23, Doty states that
development of a program in assembly language rather than in higher order
language can decrease programmer productivity by 75% and that use of modern
programming practices can result in a 67% increase in productivity for large
programs. :

The inspection methods used by IV&V permit effective detection of development
standard violations. These may include questionable use of assembly 1lan-
guage, incorrect or ineffective use of modern programming practices, viola-
tions of accepted development practices, inadequate configuration control
procedures, and so on. The IV&V agency can alert the program office to these
problems so that adjustments can be made and the full productivity potential
of these methods can be achieved.

6.2.1.6 Error Correction Procedures, False Starts, and Defect Removal: In
Reference 30, Wolverton cites studies indicating that:

e One of the major factors affecting productivity is false starts.

o Two-thirds to four-fifths of programmer time is spent in elimi-
nating faults that were introduced earlier.

Supporting these studies are the findings of Miyamoto (Reference 36) which
indicate that on the average, 16.56 days were needed to correct each fault in
a software system under study.

IV&V can have a major impact on both false starts and defect removal time.
False starts can be reduced by the jmprovement in requirements and design re-
sulting from V&V, Defect removal can be decreased through a combination of
three factors:

o Improved requirements and design mean that fewer defects are
introduced into the code in the first place. :

e Unlike development testing, which identifies the effects of a
program failure but not the program fault causing it, IVE&V
identifies the specific problem in the code, thercby reducing
the “find-and-fix" cycle of defect removal.

o Larly detection decreases the time and eftort reguired to cor-
rect problems because faults are found before the modules have
been integrated and tested.

6.2.1.7 Schedule Compliance and Progress Monitoring: In Reference 24,
Brovks states that scheduTe overruns result not from major calamities, but
from the cuiulative effects of day-to-day slippage. To prevent such prob-
lems, it is crucial that all of the activities and milestones planned for
each development phase be completed in that phase and not be allowed to ox-
tend into the next. Completion of activities and milestones, however, can be

«79.

difficult to assess. Timely deliveries of products that are inaccurate or
incomplete may provide the program office with a false picture of overall

broject status. The schedule impacts of such deliveries may no -
til late in the development process. y not surface un

The IV&V agency's technical evaluation yields, as a side ‘effect, a continual
assessmeqt of the overall quality and status of the development project.
Late dellverles, inadequate materials, failure of promised access to develop-
ment facilities, and other signals can indicate to the IV&V agency that the
development may not be on schedule. The IV&V agency can then alert the pro-
gram office to the potential problem so that corrective measures can be taken.

6.2.1.8 Adequacy of Formal Reviews and Audits: Formal reviews and audits
are the decision points of the development process. They provide the program
office with the opportunity to review the developer's progress and to approve
or disapprove development products before the next development or life cycle
phase begins. IV& can make a significant contribution to these reviews and
audits by providing the program office with an independent evaluation of the
materials being reviewed and of the review or audit itself. This evaluation
can help the program office to determine whether the development is proceed-
ing satisfactorily or changes need to be made. Informed decisions on these
issues can prevert costly schedule overruns.

6.2.2 Negative Effects of IVaV

Of the 125 cost/productivity factors identified in Table 9, IV& has a poten-

tially negative effect on 9. The following paragraphs discuss these factors
and [V&V's effect on them.

6.2.2.1 Secondary Resource Expenditures: The developer 1is required to
supply the IV&V agency with copies of specifications, specification change
vages, machine-readable source code, computer listings, trade study reports,
and so on. Generation of these deliverables requires computer time, use of
document reproduction facilities, paper, and other resources. These require-
ments impose overhead costs on the development effort.

6.2.2.2 Documentation Requirements: In order to perform requirements veri-
fication and design verification in parallel with the requirement and design
phases, the IV&V agencv requires preliminary deliveries of requirement and
design materials. To provide these materials, the developer may be required
to deliver documents that would not otherwise be put into deliverable form.
These added documentation requirements, while having possible long-range pro-
ductivity benefits, take time away from the development effort.

6.2.2.3 Need To Share Computing Facilities: On some projects, the IV&V
agency conducts some or all of its testing on the same computer facilities
used by the developer. These facilities may be government furnished equipment
provided Yor the use of both contractors, a system test bed, the operational
site, or, in rare cases, the developer's own facilities. In some cases, the
sharing may involve support software, test software, and test equipment as
well,

~-80-

o gufenlan e kiNe S ol

X e

& A ngchid i

=g

gt
;.
i
g

The requirement to share these facilities with the IV&V agency can make com-
puter facilities less available for development testing, 4ncrease turn-around
time, and complicate the computer scheduling process. The scope of these
effects can be controlled, but they can decrease development productivity.

6.2.2.4 Classified Security Environment: Providing the IV&V agency with
development materials and sharing computer facilities with IV&V analysts be-
come more complex when the program being evaluated is classified. Transfer
of materials from one agency to the other involves formal security procedures
involving not only the development and IV&V teams but security personnel as
well. Computer scheduling must take into account not only the amount of time
needed by each agency, but the types of jobs that can be executed concur-
rently. A classified security environment always affects programmer produc-
tivity to some extent; the presence of the IV&V agency adds one further
complication.

6.2.2.5 Error Reporting and Correcting Procedures: "“Error reporting and
correcting procedures” was the one cost/productivity factor considered to be
affected both positively and negatively by IV&V. The positive aspects were
addressed in Section 6.2.1.6. On the negative side is the time required for
anomaly report processing. Each report must be studied and understood. A
decision must be made as to its validity and as to the cost effectiveness of
various alternatives for action. These recommendations must then be conveyed
to the program office, a process that may involve discussions including the
IV&V agency.

If the anomaly report concerns a problem that would have surfaced during pro-
gram development or operation, development time is saved by having it pointed
out in an anomaly report. If the report is incorrect or out of the scope of
the development project, anomaly report processing time clearly outweighs any
benefits gained. If the report concerns a maintainability problem that would
not arise in the development process, its processing would tend to decrease
development productivity but have a positive effect on life cycle cost. The
balance between positive and negative effects, therefore, is complex. Section
6.3.7 examines this question quantitatively, using results from the IV&V
projects.

6.2.2.6 Customer Interface. Walston and Felix (Reference 27) identify
“customer interface complexity" as a factor in programmer productivity. They
report a 42% decrease in productivity when this interface is more complex
than normal. Though not explained in the reference, it is assumed that this
complexity is determined by such factors as the degree of customer involve-
ment in the development process and the amount of time spent in interfacing
with the customer.

IV&V can increase the complexity of the customer interface by giving the
customer more visibility into the development process. The developer may
be required to report on the status of anomaly reports, present arguments
regarding the validity of anomaly reports, respond to the customer regard-
ing 1V&V requests for deliverables, respond to the customer regarding IVAV
comments about the development process, arrange for time on shared computer
facilities, etc. 'n the long run, a better informed customer enhances

-81-

productivity; in the short run however, these added d ime

the development process. ’ demands take time from
6.2.2.7 Interfaces With Other Agencies:
that the number of agencies with which the
of experience with system development have
1ty. The need to interface with the IV&V a

Nanus and Farr (Reference 25) state
deve]oper must deal and their level
an impact on programmer productiv-
gency falls within this category.

The.interface with the JV&V agency may include discussions of anomaly report
validity; discussions of anomaly resolution; technical interchanges about
deliverables, equipment, and other aspects of the development or IV&V efforts;
and so on. While such interfaces are generally kept to a minimum to ensure

the independence in outlook of the IV&V agency, they do require time of devel-
opinent team members. T

6.2.2.8 Paperwork: Frederick Brooks (Reference 24) reports that 50% of a
programmer’'s time may be devoted to activities other than programming. Ma-

chine down-time, unrelated assignments, meetings, sickness, personal time,
training, paperwork, and so on account for the rest. IV&V's effects on meet-
ing time were discussed in the last two paragraphs. IV& may also increase
the paperwork required from the developer. The increased paperwork may in-
clude written responses to anomaly reports, reports and logs concerning anom-
aly resolution, and other records required by the program office. All of
these demands take time away from development tasks.

6.2.2.9 Support Personnel Required: In Reference 23, Doty reports that
each 10% increase in support personnel relative to programmers and analysts
results in a 25% decrease in productivity. This figure is based on an ex-
pected mix of 20% support personnel to 80% programmers/analysts. If require-
ments for deliverables, computer operators, and other services imposed by the
presence of an IV&V contractor require the addition of support personnel, this
factor would come into play in reducing productivity.

6.3 Project Results

ot all of the hypotheses set forth in Section 6.2 could be evaluated from the
data collected. The data that were available, however, together with results
from the literature, provided answers to the following questions:

e How did IV&V cost compare with development cost on the projects
surveyed?

o To what extent did IV&V contribute to:
- The quality and stability of requirements?
- The quality and stability of the design?
- The quality and stability of the code?
- Compliance with development standards and configuraticn
management procedures?

e What was the cost benefit of early error detection?

-82-

N

R

PR k-t

P T T e e A T

¢ What were the positive and negative effects of anomaly report
processing on programmer productivity?

The following paragraphs discuss these results.

6.3.1 Comparisdn of IV&V Cost to Development Cost

Figure 22 compareé IV&V cost with software development cost and with total
acquisition cost. Discounting Project 5, for which cost figures were not
available, IV&V project costs averaged 25% of development costs and 20% of
total acquisition costs. These would appear to be good rules of thumb for
IV&V cost estimation.

6.3.2 The Effect of IV& on Requirement Quality and Stability

Of the IV&V projects surveyed, only one--Project 3--performed a standard

requirements verification. Projects 1, 2, and 5 reported a number of re-
quirement anomalies (118 for Project 2), but the phase in which they were
reported was past the time at which significant cost/productivity benefits
would be realized. Project 4 reported most of its findings in the weekly
walk-throughs performed for the development project, making the effects of
its requirements verification unavailable for the study.

Project 3 reported 96 requirement anomalies in the pre-code phases of the
project, that is, early enough to make a difference in the quality and sta-
bility of the requirements. Sixty-seven more requirement problems were re-
ported after code release.

The breakdown of the 96 requirement anomalies was as follows:

Incorrect requirements: 38

Inconsistent requirements: 14

Incomplete requirements: 28 N
Other content problems: 13

Presentation, standards problems: 3

The effect of these anomaly reports was to clarify the program requirements,
improve the quality of the requirement specifications used as input to the
design process, prevent false starts resulting from inadequate understanding
of the problem to be solved, and decrease the number and magnitude of re-
quirement changes needed during subsequent development phases.

6.3¢3 The Effect of IV&V on Design Quality and Stability

0f the IV&V projects surveyed, only Project 5 conducted a standard design ver=
ification. This analysis resulted in 75 anomaly reports, falling into the
following categories:

e Requirement compliance: 1

¢ Choice of algorithm, mathematics: 12
o Sequence of operations: 9

o Data definition: 22

2
50
[7;]
N (@]
© 404
o+~
=
g‘ 30 28% ‘
(o] has 00 o
'6 259, 27% 25Y%
>
&
20
[Ton
© 13%
=
§ 10 4
[J]
[N
Project 1 Project 2 Project 3 Project 4 Projects 1-4

Figure 22a. IV&V Cost as a Percentage of Development Cost

w504

8

g

S 40—

-

:5

=]

g 30 -

< 229% o 22%

'S 20% 207
8 20

f-—

4 11%

[=]

o 104

=

[

£

[+¥]

& Project 1 Project 2 Project 3 Project 4 Projects 1-4

Figure 22b. IV&V Cost as a Percentage of Total Acquisition Cost

-84-

e Data handling: 23
e Interfaces, 1/0: 8

The effect of these anomaly reports was to improve the quality of the design
materials used for coding, allow design problems to be corrected before they
were propagated into the code, decrease the number and magnitude of design
changes needed once coding was under way, and decrease the time spent in false
starts and defect removal during the coding and testing phases.

6.3.4 The Effect of IV&V on Code Quality and Stability

The 5 IV& projects reported 329 code anomalies before program testing was
under way, that is, early enough to have significant cost/productivity bene-
fits. The number of such anomalies on each project was as follows:

Project 1: 40 -
Project 2: 66
Project 3: 58
Project 4: 83
Project 5: 82

These anomalies fell into the following catagories:

Project

Category T 7z 3 & 35 M
Requirement/design compliance 1 - 17 6 1 25
Choice of algorithm/mathematics 17 25 5 17 15 79
Sequence of operations . 3 3 10 3 14 33
Data definition 3 10 1 17 5 36
Data handling 9 17 9 22 2 718
Timing, interruptibility - 1 - - - 1
Interfaces, 1/0 ' _2 5 5 10 4 26
Other content problems 3 1 9 2 13 28
Presentation, standards compliance 2 4 2 6 9 23

The effect of these anomaly reports was to improve the quality of the program
submitted for testing, allow for correction of coding problems before inte-
gration of modules made this process more difficult, decrease the number and
size of proyram_ghinges needed during testing, and decrease the time devoted

o

-85-

A £

e it

6.3.5 The Effect of IV&V on Standards Compliance

A total of 55 anomaly reports on the 5 projects concerned compliance with de-
velopment standards and configuration management (CM) procedures. The break-
down of these reports by project was as follows:

Anomalies Concerning
Project Standards CM

2
8
31
1
9

Y o N —
— g s

The standards-compliance anomaly reports were concerned with violations of

- specified standards and violations of well-accepted programming practices.

These anomaly reports alerted both the developer and the program office to
potential problems in the production of code and documentation that could
have resulted in development and maintenance problems. The configuration
management anomaly reports concerned incorrect version identification of spec-
ification change pages. These reports helped to prevent the dissemination of
different document versions bearing the same configuration control markings.

6.3.6 The Cost Benefits of Early Detection

A major objective of the IV&V study was to quantify the effects of IV&V on
development cost/productivity. By applying cost/productivity figures found
in the literature to IVAV results of the five projects surveyed, it was pos-
sible to obtain an estimate of the cost benefits associated with early detec-
tion of anomalies. .

A basic question that had to be addressed betore any analysis could take
place was which anomaly reports to consider. Possibilities were:

o All of thenm
¢ Only those that were accepted and corrected
o Only those that affected reliability

Consideration of this question led to the following conclusions:

¢ An anomaly report has a cost/productivity benefit on the devel-
opment effort if it reports a problem that would have surfaced
later in the da.clopment or in operation and required correc-
tion at that time.

o The problems that woild have surfaced later in the development

effort or in operation and required correction at that time were
those affecting program reliability.

-86-

Lps o oni]

KA et anaat.

¢ Reports concerning maintainability anomalies result in T1ife
cycle cost savings but not necessarily in development cost sav-
ings, the subject of the analysis.

e Invalid reports or those that were not acted on would not have
a cost/productivity benefit.

To make the analysis meaningful, therefore, it was limited to those anomaly
reports that were concerned with program reliability, accepted as valid by
the program office, and acted on by the developer.

{wo analyses were performed. The approach taken for the first was as fol-
ows:

¢ Select the anomalies meeting the criteria outlined above.

¢ Separate the selected anomalies according to the development
phases in which they were detected.

e Apply the error-correction cost figures reporteu by Wolverton
in Reference 30:

Correction during requirements definition: $195
Correction during design: $489

Correction during coding and checkout: $977
Correction during test and integration: $7136

1 1 1 1

e Assume that all of the anomalies would have been detected dur-
ing development testing if IV&V had not been performead.

o Calculate the cost savings realized by detecting anomalies be~
fore the testing phase. .

Table 10 shows the results of this analysis. In keeping with the assumption
that all anomalies would have been detected during development testing, the
anomalies detected during the testing phase are shown to have no cost bene-
fit. Those detected earlier are shown to have cost benefits increasing with

their distance from the testing phase. Total savings are shown in the right-A -

most column.

The most striking finding is that even assuming that all anomalies would have
peen detected by the developer, substantial cost benefits can be demonstrated
based on early detection alone. Even with 270 anomalies assumed to have no
cost benefit at all, the figures show an average savings of $601,613 per pro-
ject. For Project 4, the savings exceed the cost of the IV&V project, despite
the fact that most requirement and design anomalies were not documented in
anomaly reports, so are not shown in the analysis. Project 3 savings come
close to its cost. The lessons shown by the table are clear:

o The earlier anomalies are detected, the greater the cost
benefits.

-87-

] SE1° 1S Bt 353y
651°9$ £26 3 Worsay) pue Suipe)
1bs° 98 62 $ ub:saQ
196°9% s61 § GOEIHWESAC SIS (nhay
2SPYd DUIISI] Y] [L3U[DuUFIIeM Jaa(SBULLEC AfPTOUY GP ¥Ig O 356D woIIcIIBC JO 2SFU4
{0f JWwazap) Sumop(0) Ay U0 POSPG Sav Saunhij ($67) *c '
A31 11621 [ou wPJBoAd S0y TOIIIT POALATTS PUP paaInbId (PW SIL [PrOUP PSOY) ILAISAICSD SILNOD £ivnuy o7 “M
N PALI0LIBC uFAg 30U poY A%A] 3§ SUISAY LI PIYSIIAP LSV ArFy PIAOM SI:JEOLP [IF ITY1 SOERSSP CIuFuDDS Siyf <7
2EPICY;
990°80C'E€S 0§ 02L°926°1S 02 v61'452°28 9:4°119°28 25sioes g9€ 09/°1658 CERUOLSS 021°6ES (-5 Z11°2228 25£°9228 me2*a8 i e
€1e'926 § 08 250'gee § 2€ GOI'VIE S Of6'f9f § [20°68 § 16 PO 7isS Zor 0rIS e3eii I - - - - <
eBr°IES § 0% 9IR'Zy & 9 vO6 PPE § S19T6eE § ZII'we § 95 Zeetef S 9182y S vi6‘Z S 9 204° 2518 266°5515 082 S ze r
pzr'ety § 0$ 2stl ¢ 2 0ve'69E $ 0%1°82y $ 0Ze'eS S 03 tII'GLCS ZUL657S RES°0Z8 2y Oi*'E5 S oSELL S 0tiS i f
€61°2eL $ 0% tOI°sg9 ¢ 68 €61%281 § Z(2'906 $ 6L p2IS £ - - - - - - - -~ ?
eyv'evy $ 08 924°f28 § 911 sEb'Evh $§ 26£°£1S S witor § 0 X - i - - - - - - 1
sbuiAes Sbul X14 03 saife sbujaeg YETEN buypoed SAGP SburaPy Dui3sd) WhiSAG . S91[f SDULAPS PuiIsa] 3¢ satie 309
[es01 -aeg 3503 ~wouy u} ug ~woiy w} 6] e] vl bay b Cemoiy o4
30 “op 30 oN 30 oy . 30 "oy
¥13 03 1503 ¥14 a3 3507 £¥Hd 03 3503
aseyq burisay BSPUG AV puE tuipo) asvyd uhisap : 3 JUg UDYIILLFIG S iuavesinbag

;1 OH4RUBIS--U01133330 Alae] 30 SILjaudg 3503 01 3iqel

¢ [V&V can pay for itself through early detection of errors.

The second analysis was identical to the first except that instead of assum-
ing that all anomalies would have been detected during development testing,
a scenario was adopted in which 10% of the anomalies went undetected into the
operational environment and were found there. Figures published by Finfer
(Reference 8) indicate that the cost to correct such problems is 15 times the
cost if detected during coding and checkout. Combining this finding with
Wolverton's cost figures produces an average of $14,655 to correct an error
once the program becomes operational.

Table 11 shows the results of this analysis. The average savings are $714,097
per project, up from $601,613 in the first analysis. Savings shown for Pro-
jects 3 and 4 exceed the cost of the IV&V efforts. Not shown is the fact that
if even one of the errors not detected until operational use had a mission-
threatening impact, the cost benefit of IV&V detection would be much higher.
If one of these errors had a life-threatening impact, the benefit would be
incalculable.

6.3.7 Cost/Productivity Fffects of Anomaly Report Processing

The time required to analyze and respond to anomaly reports is the most con-
spicuous imposition of IV&V on development productivity. The question that
arises is whether there are sufficient productivity gains associated with
gach report to offset the time that must be spent.

To answer this question, the anomaly reports for which resolution was known
were divided into four groups:

e Reports that were concerned with reliability, declared valid,
and acted on

e Reports that were declared invalid:- or that were withdrawn by
the 1V&V agency

o Reports that were declared valid and were acted on, but did not
concern reliability

e Valid anomaly reports that were not acted on

The following paragraphs explore tne cost/productivity impacts of each type
of report.

6.3.7.1 Effects of Corrected Reliability Anomaly Reports: The first group
of anomaly reports were those that were concerned with program reliability,
judged valid by the program office, and acted on by the developer. These
reports concerned anomalies that would have shown up either during program
testing or during operational use, that is, anomalies that the programmer
would have had to dral with eventually. The analysis assumed that all of the
anomalies would have been detected during program testing rather than the more
troublesome and expensive case of their showing up in operational use.

-89«

e 3 - wm@.?” 438 JEINLIPS0
£

61571 $ c s L3 [Z2T51
29’18 65°58 FZC I PR FUP Evip)
991° 1§ 58 @wy 3 ub; S
090’ #1s 136° 9% et 8 S6334UE JIT SICIIIN ALY
IS0y [EUC1IPISAD §EIUN FAYg Da1sd] (IO FiduEwy 67 54§ 0] 353) T Emr eI 30 I5¥L4
Gug3ien Jang sEUIARS EusBion Jaag sEuLerS

(0 R 39Sy} Bucm1103 0 U PITFY 2SR saarbsj 3503 ¢

-90-

£33 [3GPe L7 PS50 SDF GOUIIT FRATICHS PEF SAHRI IPED SR RTUCTP MG TEARAMDS SILNCD Aoy *2
BN RUDLLPIMD Wy JALITW %OY TEuyIsEY D PITIDTM GADG Jedy PIeOR SR INKET D 30 0L SRR SauRilP ULaTaIcs 29l “1

SENEX

2up°05°€S $I0°€028 #EL°621°28 024°526° 1% (2 6L°628°28 METUNR'ZS 295USES 96T ZIGISS ZEOTILM dzrTes @ fr1°s328 LY'ETES oA A 11y

G519 S 190°vZ S Ti0'Ze 8 Zet'mez § I Sovdel S #edeny 3 [eRErs 18 Bzl R sl A - = - 5
B1°s09 § 11s'v § ey $ 9P $ 9 proteer 8 Z2sitr % 2UCws 8 95 Iy $ LA s MET?S 3 $12°5%38 S8 €'y 2 H
660°228 § 208°02 § te6°2z $ 29°261 § 42 ws9tvir 3 2Ly 8 2w ¢ 02 s5e001E8 ZEITS PISTED A 6TW S HHM S 223t S 3 1
C0o'bEe § 026°99 $ ¥20°20C § OISES & 68 Sedue 8 907 196° 1% /02213 ZT - - - - - - - - by
So8°bes § 022'(E S 996°%16 § SLL"re8 $ 9 sesTsey % 6R5°(% $ TR0 S U - - - - - -~ - - f
ShujA®S sbujarg FESTA] buirisa) Sasge LI 43367 FST1569 S5 (# T arg FEETaRT ITF I S T R ZTLEE] FER 3] - Gar SaigF Al
Leiol v} -wouy wl ~untry @y -y bag up Ceueny 34
40 ‘on 50 “on LG 30 n
Xt4 01 350D ¥4 0% 1307 54 O3 1%9) . s g S I90)
5044 DULISI] 0G4 ORRY] P SUp0d Suvae GhisaC FTE e Ay T R T T = 7Y

2 0}4BUIIG --U011I233Q Al4e3 JO SItjusg 3s6) “IT 2iqel

(Gl W3 sy e -

| Pt
Bt

TR

ey

In a paper on error remediation expenditures (Reference 35), Herndon and
Keenan present the following equation:

Error remediation cost equals the sum of the costs of:
e Error handling:

- Trouble report generation
- Management analysis

- Resolution form generation

- Configuration contre! board actions

: . o Error analysis
¢ o Error correction
- ¢ Retesting

They give as averages the following figures for the hours required for each of
these activities:

Trouble report generation .17 hours

Management analysis <17 hours

Resolution form generation +25 hours
3 ! A Configuration control board action .67 hours
4 t} - Error analysis 0-12.0 (say 6) hours
o » g Error correction 0-28.0 (say 12) hours
3 1 Retesting - 1.94 hours

Total 21.2 hours

Other authors present considerably higher estimates. Miyamoto, for example,
13 a ; reports that the average "find-and-fix" cycle for program faults in a large
b = : system was 16.56 days (Reference 36). Multiplying this figure by a conserva-
RE E : tive 6 hours per day results in 99,36 hours, nearly 4.7 times the figure given
by Herndon and Keenan,

1 g - The figures reported in the literature appear to depend upon the size and
gf , 3 © complexity of the software being developed. For the analysis of IV&V results,
R ;. i . it was decided to use both sets of figures quoted above in order to raepresent
3 ;. the range of values reported in the literature. Incorporating Miyamoto's

result into the Herndon-Keenan model produces the following estimate for error

remediation:
Trouble report generation 17 to .8 hours
Management analysis A7 to .8 hours
Resolution form generation «25 to 1,18 hours
Configuration control board action 67 to 3.15 hours
Error analysis ' - 6.0 to 28,2 hours
Error correction 12.0 to 56.4 hours
Retesting 1,94 to 9.12 hours

Total ' 21,40 to 99,36 hours

-91-

| S m
Shooman and Bolsky (Reference 6) add that the typical amount of computer time

used to diagnose a problem is 0-4 runs, using 0-30 minutes. They cite as a
mean .61 runs and 13.5 minutes (.225 hours) of computer tine.

When a program fau]t is detected by IV&V rather than by the developer in.pro-
gram testing, the impcct on remediation expenditure is as follows:

o Trouble Report Ceneration: No trouble report has to be gen- .
erated by the development test team, resulting in a savings of
.17 to .8 hours per anomaly.

¢ Error Analysis: The time needed for error analysis is signifi-
cantly reduced because, unlike a trouble report, which generally
describes only the symptoms of a fault as they were observed
during testing, an anomaly report identifies the specific error
made and often recommends corrective action. A conseivative
estimate would be that error analysis time is cut in half when
starting with an anomaly report rather than a trouble report--
a savings of 3.0 to 14.1 hours per anomaly.

o CPU Diagnostic Time: The computer time needed for diagnostic
runs is also reduced because of the specific information pro-
vided in the anomaly report. Assuming a reduction by half re-
sults in a savings of .1125 computer hours per anomaly.

¢ Paperwork: Paperwork, in the form of anomaly response forms,
special resolution forms, and so on, may or may not be greater
than that required in response to trouble reports. Assuming
that the time required for paperwork is increased by half
results in an extra .125 to .59 hours per anomaly.

¢ Management Analysis: The time required to evaluate tradeoffs
in correcting the problem may be greater in responding to anom-
aly reports than trouble reports because of IV& and customer
concurrence requiraments. Assuming that the time is increased
by half results in an extra .085 to .4 hours per anomaly.

e Other Factors: A1l other factors in the Herndon-Keenan model
would be %the same whether processing an anomaly report or a
developer-generated trouble report.

Table 12 shows the results of this analysis. The cost figures discussed above
have been multiplied by the number of anomaly reports on each project so that
the total hours saved and the extra hours expended can be seen.

Despite the consistent use of conservative assumptions, the figures indicate
that the processing cf anomaly reports documenting problems that would have
had to be corrected eventually actually saves programmer time. The estimated
savings for each anomaly is 2.96 to 13.9 hours, plus 6.75 minutes of computer
time. For Project 4, which had the smallest number of anomalies in this
category, estimated savings in programmer time ranged from 267 to 1,252 hours.
For Project 2, with the greatest number of anomalies, estimated savings ranged

-92-

¥

5
13
M
5

Asns aasdudy ancy 433 OyY SESlY
aotas A, P00UR DI M) LI0EY TITD y° 01 550° SaNnStY °9
: 20daa Aieuoup §OPI J0j $IMDY BAIED £5° 43 §71° SISy °§ 1
.) 14sd2a Aje0ur O O PIAL AN S¥InUDD G211 SAuRSSY Y o
: 1sndaa Kyemour GO J0F PMES Zamoy {°31 02 n°g Swnssy ¢ Q.a
snt3s AjTuouP YOI a0y YARES Tatey ¢t 01 17 Sanssy 2 v
ud PIYIP PUP DHICIICR I W I {euCur £3341501483 Basy Y

. R T
, : |
1'vg 091°0tvs-0v9'ges dO¥‘O1-9i2'2 OOf-19 s - 1 2 it (] B85-80t S
§70 000°%0 s-0¥9 £i$ 0091 -1 Fe-o 53 o ETTSE 22 1] 5
: 1°01 080°05 $-089°01$ 252°1 ~(® 9E-L g5-it o1 1 DR -5t % y
: 95t - 022 $-08p°9T8 €€6°1 -2T¥ w-21 - sl 95t 096°3 ~I1y 142 ££1 £
i g'pz 6v2°0218-009°5Z8 900°€ 0¥ se-81 . 2R TR 96'T -39 ta-n 92 z
. 2°1Z 009°vOTS-0p2°228 S19'2 -955 i-51 - TR, 15929 PeI-2E w2l 1
SITON nm..c:oc <ano;l TS TSALRSY mfg.-&w& oy Siskrey N@.ﬂﬁu!& %diﬂ.o& 1531644
..uus._sau {55U0%43d b IUTY . AFIVAD Fr.¥ey . # 30 o4
sbugavs SN <ahon, 143%3 T TTPeiEs San0H

(eAOWaY 133530 5O 3500 Y3 UO 133333 ABAL ¢l A19F1

g i s

from 640 to 3,006 programmer hours. It should be noted that these findings do
not take into account the additional cost advantages of early detection. They
assume, in effect, that all anomaly reports were submitted in the testing
phase.

6.3.7.2 Effects of Invalid Anomaly Reports: One way in which IV&V can waste
programner time 1is by submitting invalid anomaly reports. Reports may be
invalid because:

They identify faults where none exist.

They recommend changes that are beyond the scope of the devel-
opment effort.,

¢ They recommend changes thatlgre not necessary for satisfactory
program performance. » . _

" The number and percentage of anomaly reports declared invalid on the five

projects was as foilows:
Project 1: 9 (4%)

Project 2: 40 (12%
Project 3: 25 (5%

Project 4: 3 2%)
Project 5: 18 7%

Total 95 (6%)

~ An average of 6% of the anomalies reported were declared invalid. Project 2,

with 12%, had the highest number, When questioned about this figure, project

. participants explainod that there was disagreement between the developer and

the IVaV team as to the degree of accuracy that could and should be achieved .

- in program calcviations, and the disayreement resulted in- quite a féw IV&V

recomuendations being declared invalid.

To quantify the effects of processing invalid anomaly reports, the fclleuing |
assumptions were made:

s The human and computer tlme'spent in analyring and rejecting an
invalid report may be as great as the tiwme speat in processing
a valid one.

e The time spent for paperwork and managument analysis may also
- be as yreat for an invalid veport as for a valid one.

¢ The other costs associa*~d with error remediation do not come
into play in processing invalid reports.

These assuinptions yield the following estimates for time cxpended on each ia-
valid ancimaly report:

.94

Error analysis: 3.0 to 14.1 hours

Computer time: 6.75 minutes

Paperwork: .375 to 1.77 hours

Management analysis: .225 to 1.2 hours
Total programmer time: 3.63 to 17.07 hours

Table 13 shows the results of these assumptions. The amount of time spent
processing each invalid anomaly report was estimated to be from 3.6 hours to
17 hours. Thus on Project 2, with 40 such anomaly reports, the amount of time
was 145 to 683 hours, costing $5,800 to $27,320. On Project 4, with only 3
such reports, the amount of time was 11 to 51-hours, costing $440 to $2,040.

A
Minimizing these figures should be a goal of all IV&V projects. The program
office can support this effort by making both the developer and the IV&V con-
tractor aware of the scope and nature of anomaly reports that will be consid-
ered valid.

6.3.7.3 Effects of Corrected Non-Reliability Anomalies: Anomalies that have
been corrected but do not concern reliability are primarily maintainability
anomalies. These anomalies are concerned with extraneous code, violations of
development standards, incorrect documentation, and so on. These problems
would not arise in program testing and therefore do not fit into the error
remediation analysis presented above.

The number and percentage of such anomalies was as follows:

Project 1: 13 (5%)
Project 2: 18 6%
Project 3: 252 49%
Project 4: 64 37%
Project 5: 31 10%

AN 378 (24%)

Nearly half of the anomalies on Project 3 and over a third of those on Project
? fell into this category. Percentages for the other projects were 10% or
288, -

from the point of view of the developer, these anomaly reports may be consid-
ered pure overhead--they must be dealt with even though they do not help to
rainove operational problems that could impair developer testing. The cost
henafits of these anomalies come into play only when the entire life cycle of
the software is considered. Correcting them decreases the productiviiy of the
development team, but increases the productivity of the maintenance team. No-

-quantitative data on this tradeoff could be found.

8.3.7.4 Effects of Valid Reports That Were Not Acted On: Anomalies in the
tourth category were those for which the program office decided that it was
not cost-effective to make a correction even though the problem was real. The
number and percentage of such annmalies was as follows:

~95.

14502 Jdomodumm unoy 43d gp§ SawNSSYy g

140daa Ajeuoue a3d sinoy zZ*1 03 GG2° SMWNSSY %
140094 Apewoue 43d Saroy f/°1 01 G/E° SawNSSY “¢
A : j40d34 A|vwoue aad sanoy Jajnduwed GZI1* SauNSSY 2
: o L 4 140daa Kpewour 43¢ sancy [°p 03 £ SawAssy 1

3 &
: o
, ; £°01 088°%9$-008°C1$ 229°1-G¥¢ -2 ROT-9 i°01 ope1-682 96 A

0°C 02£°218-G¥2°Z § 80E -99 22-S 2e-1 0°Z . ¥5Z2 -¥S s

€0 0v0‘Z $-Ovt § 1§ -1 -1 -1 £°0 2% -5 £ ¥

M 82 080°/1$-009°c ¢ 2t -06 0E-3 th-6 g2 £ee -SL - . 174 £

m S°v 02£°12%-008°G § €85 ~G¥1 8h-C1 1/-61 S yge ~021 15 2

1 :

: 0°T 091°¢ $-082°1 $ #SI -2¢€ 11-2 91-€ 0°1 21 -£2 6 1

.m SJANOH mm;mﬁ—oa SANOH qm_ma-mc< wxgozgwamm 29t} mmmmanw:¢ S BNy 3091044

M 493ndwo) (305194 Juanabauep gwunaaau oday | wwﬂmacn

W Joedw] | @301 “JusdS SIANOH

m

sja0day Ajewouy pLieAu] 30 S323443 3503 °£1 2igel

B

e L A Al

BT e St e

¢

S T RATI

M 2

R s

P e Rt A

STy

. L=
ezt~ 2o en S Aar T ok A £ et S Sy U BN /e 83 M S kP B G A e AR i 2o

Project 1: 19 (
Project 2: 19 (
Project 3: 12
Project 4: 12

Project 5: 88 _ (28%)
All: 150 (10%)

Project 5, because of the experimental nature of the development, had an un-
usually high number of this type. The other projects show more typical
results, averaging approximately 6%.

The cost impact of these anomaly reports could not be determined. On the
negative side, they required processing time without producing any reliability
or maintainability gains. On the positive side, they reported real problems
that may have been encountered in testing, and therefore may have saved the
time that would have been devoted to those problems. No way was found to
quantify these effects.

6.3.7.5 Summary of Anomaly Report Processing Effects: Table 14 summarizes
the contents of Sections 6.3.7.1-4. The primary conclusions of the analysis
were as follows:

¢ The saving of programmer time on the valid, fixed, reliability
anomalies far outweighs the time expended on invalid anomaly
reports.

o The time spent fixing non~reliability anomalies results in long-
range savings in the form of more maintainable software.

o Valid, unfixed anomalies have the mixed effect of requiring
handling time but pointing out probiems that the developer or
maintainer may have to be aware of.

[VU VIS S PV U UIIVSP P

%

SR

¢
e
i
t

T3 IR SRAL S G AT T a7 Sy v e e

Table 14. Summary of Anomaly Report Processing Effects

Anomaiy Report Type

Project 1:

Valid, fixed, reliability
Invalid

Valid, fixed, nonereliability
Valid, not fixed

Project 2:

valid, fixed, reirabilily
Invalid

Valid, fixed, non-raliability
Valid, not fixed

Project J4:

Valid, fixed, reliability
lnvalid

Valid, fixed, non-veliability
Valid, not fixad

Project 4.

Valig, fiaed, reliability
Invalid

Valid, tixed, non-reliability
Valid, nutl fixes

Project b

Valid, fized, veliability
[nvaltd

Valid, fixed, non-reliability
valid, not fized

all Projects:

Valid, fixed, reliability
{avalig

Valid, fixed, non=peligbility
Vatid, not fixed

Number

188
19
13
21

216
40
19
19

138
25
303
19

e S

115
14
k)

17
a5
134

150

Cost./Productivity linpact

Savings of 556-2,615 hours; 21.2 computer hours
Expenditure of 32-154 hours; 1.0 computer hours
Development time expended; maintenance time saved
Indeterminate effect

Savings of 640-3,006 hours; 24.3 computer hours
Expenditure of 145-683 hours; 4.5 computer hours
Development time expended; maintenance time saved
Indeterminate effect

Savings of 408-1,920 hours; 15.5 computer hours
txpenditure of 90-427 hours, 2.8 computer hours
Development time expended; maintenance time saved
Indeterminate effect

Savings of 267-1,292 hours; 0.1 computer hours
Expenditure of 1l-51 hours; 0.2 computer hours
Development time expended; maintenance tiue saved
Indeterninate offect

Savings of 341-1,600 hours; 12,9 computer hours
Expenditure of 66-308 hours, 2.0 computer hoyrs
Developmant tive expeaded; maiatanance time saved
{ndeterminate effect

Saviags of 2,212-10,3%1 hours, 84,0 compatee hued
Lamondityee of 3851622 agyes, 10,7 tosuter Ry
Divelopieat 118W axpended, wainlinafcn L18¢ Savid
[ndetarainate affect

7. CONCLUSIONS AND RECOMMENDATIONS

The IV&V study analyzed the results of five IV&V projects to determine the
effects of IV&V on software reliability, maintainability, and development
cost/productivity. The following paragraphs present the study's conclusions
and recommendations.

7.1 Study Conclusions

Conclusions resulting from the study were as follows:

e IV&V results depend significantly upon project objectives and
directives--IV&V finds the types of problems it is directed to
find.

¢ The primary emphasis of IV&V is on software reliability; soft-
ware maintainability is deemphasized on many projects.

e While IV&V's effect on reliability cannot be quantified, the
impact appears significant,

- Each project detected an average of 150 anomalies that would
have affected program reliability and that were deemed im-
portant enough for correction. This is equivalent to 2.2
such anomalies per thousand machine language instructions.

- Thirteen percent of these anomalies were of High severity,
indicating possible threat to life or property; another
35% were of Medium severity, indicating serious threat to
mission objectives.

- None.of the programs that underwent IV&V have experienced
operational problems that required modification.

o IVAV is being underutilized as a tool for improving software
maintainability.

- Software maintenance costs are approaching 75% of software
life cycle cost.

- This cost can be reduced by designing software with specific |
: iraintainability characteristics. :

« 1V&V is ideally suited for evaluating these characteristics.
- IV&V's current charter regarding maintainability is usually
limited to evaluating program documentation and identifying
latent errors; this role is often deemphasized.
?f - 0On one project where maintainability was emphasized, IV&V

detected 330 anomalies whose correction improved software
maintainability.

9.

e V&V is cost-effective, especially if applied early.

IV&V costs average 25% of development cost and 20% of total
software acquisition cost.

0f 125 factors known to influence programmer productivity,
IV&V has no effect at all on 90, indicating the limited
overhead that IV&V places on the development process.

0f the remaining 35 factors, IV&V has a positive effect on
27, a negative effect on 9 (on one factor, both a positive
and negative effect could be seen).

IVEV increases programmer productivity by saving the time
that would have been devoted to false starts and defect re-
moval.

IV&V can pay for itself through the cost benefits provided
by early detection of anomalies.

7.2 Recommendations for IV&V Planning and Management

Study results led to the following recomumendations for increasing IV&V effec-
tiveness on future projects: .

¢ Concerning reliability:

Encourage independence of IV&V outlook and techniques by
controlling the deyree and type of contact between the de-
veloper and the TV&V agency.

Plan the IVAV project to allow for early detection of prob-
lems s0 that there is time for adequate redesign.

Ensure that corrections to anomaiies are raverified by the
IV&V agency.

e Concerning maintainability:

-

Direct tne IVEV oagency to evaluate the software for maine
tainability as well as for reliability.

Draw up a checklist of specific maintainabllnty criteria
such as those in Appendix C.

Schedule the development and IVEV efforts so that there is
time after the conclusion of testing for the IV&V agency

to evaluate final program documentation,

Treat maintainability anomalies as seriously as reliability
anomalies; jerhaps establish separate criteria for High,
Hedium, and Low severity ratings for these anoamalies.

-100-~

T

R «‘;{r TR IR

= AT

¢ Concerning cost/productivity:
- Stress early detection of anomalies.

- Include in the IV&V process requirements verification and
design verification performed in parallel with the require-
ment and design development phases.

- Ensure delivery of preliminary requirement materials, design
materials, and code so that IV&V can proceed in parallel
with the development and provide feedback into each phase.

- Clarify IV&V scope to minimize the number of anomaly reports
declared invalid.

- Minimize the overhead associated with anomaly report han-
dling while still maintaining high visibility into anomaly
report resolution.

7.3 Recommendations for Future Study

A number of interesting questions arose during the study that could not be
answered with the data available. The following paragraphs identify these
questions and provide some insight into the issues involved in answering them.

7.3.1 IV&V Preductivity

Considerable attention has been devoted to measuring and improving programmer
productivity., To our knowledge, however, no attempt has been made to measure
IV&V productivity, or even to define it,

Progranmer productivity is measured in terms of amount of output per unit of
time, for example, source lines delivered per month. Attempts to transfer
this measurement scheme to IV&V run into problems. The primary output of an
IVAV team is anomaly reports. Can an analyst be required to find so many
anomalies per week? Is the analyst who detects five anomalies in one week
more productive than the analyst who detects only three, or in fact, the
analyst who detects none? Are 10 Low-severity anomelies equivalent to ! High?
If 20 anomalies are detected in March and 10 in April, has IV&V productivity
decreased 50%?

The answer is both “yes" and "no." Finding anomalies is what IV&V is about,
but so is ensuring their absence. Thorough analysis of an error-free subrou=-
tine produces no anomaly reports, but cannot be considered a nonproductive
activity. Its output, in effect, is a “stamp of approval® for the subroutine,
no less valid a product of IV&AV than anomaly reports.

If “anomaly reports per unit of time" is not a good measure of IVAV productiv-
ity, what is? It would seem to make more sense to measure IVEV productivity

~in terms of input processed than output produced: lines of code analyzed per

week, pages of documentation evaluated per month, test procedures carried out
per week, and so on.

-101-

IV&V productivity measured in this way could be expected to be influenced by
many of the same factors that affect programmer productivity. Program size,
complexity, application, and so on affect the difficulty of both developing a
program and evaluating it. The same is true for specification quality, pro-
gramming practices used, personnel experience, and many of the other factors
identified in Table 9. One factor not experienced by the development team is
the IV&' project's dependence upon the development schedule. When the de-
velopment schedule slips and required products do not become available, the
IV8V schedule necessarily slips as well. The degree of cooperation provided
by the developer can also affect IV&YV productivity.

Interesting questions concerning IV&V productivity, then, are:

¢ How should it be defined?

e How do factors that affect programmer productivity affect IV&V
productivity?

¢ What other factors affect it?

¢ How dc different tools, techniques, and procedures affect it?

¢ How do different development practices affect it?

¢ What are reasonable productivity rates to expect on a project?

¢ How can IV&V productivity be improved?
1.3.2 Effects of Modern Programming Practices
Modern programming practices have been incorporated only recently into the
types of software verified by IV&V. As a result, the IV&V study was able to
inciude only one such project, a sample clearly too small to permit conclu-
sions to be drawn about the effects of modern programming practices on IV&V.
Questions of interest are:

o What types of anomalies are found on projects using modern pro=
gramming practices?

¢ How do they compare with the results of other prdjects?
¢ Are different IV&V techniques required for these projects?

e Can IV&V help to evaluate the effectiveness of various program-
ming practices? _

1.3.3 Effects of Program Characteristics on IVEV Results

The V&V sthdy had limited information about each program evaluated. Of con-
siderable interest would be a study that related eéach anomaly to:

-102-

R

e

e

N ARV ATy oreai e e T et o B I R L N R

The software function or module in which it was found

The specific characteristics of that module, such as size, com-
plexity, number of interfaces, etc.

The deve]opment' and testing methods used on the development
project

The development standards used on the project

Other program characteristics

7.3.4 Effects of Various IV4V Tools and Techniques

Software tools can be a powerful aid to IV&V analysis and testing. They can
detect the presence of certain types of problems, ensure the absence of
others, and aid in the analysis and testing activities. An interesting sub-
Ject for study would be the detection method used for each anomaly reported.
Of particular interest would be:

The relative effectiveness of manual versus automated analysis

.
® The relative effectiveness of specific tools and techniques
¢ The types of problems detected by each tool and technique
o The types of tools and techniques still needed by IV&V

7.4 Recommendations for Data Collection

IV&V and development projects generate enormous amounts of data, not all of
which can be saved. The following recommendations are for IV&V recordkeeping
procedures that would aid in future studies of this kind.

Maintain a central anomaly report log for each program eval-
uated; record for each anomaly:

= Anomaly report number
- Anomaly report date and analyst

- Anomaly location, including document version, program
version, routinc name, if applicable

-« Anomaly description
- Anomaly category
« Special circumstances syrrounding the anomaly

- Anomaly effects

-103-

PRPCRI,

Yoo b e

e Y

Anomaly severity

Development phase when detected

IV&V phase when detected

Method or tool used for detection

Anomaly acceptance or rejection, and date
Anomaly resolution and date of resoclution
Materials changed and nature of changes

Acceptibility of resolution to the IV&V contractor

Include a copy of each anomaly report in the loy file.

In a central loy for each program, record for each routine:

Language used

Size

Function

Number of interfaces

1/0 characteristics

In a project management 104, record:

Monthly man-loading for each IVAY gctivity
Identification of materials evaluated

Personnel assignments in terms of pages of documentation or
lines of code to be evaluated, test procedures to bLe per
formed, etc.

Time required to complete each assignment

Humber of anomalies resulting from each assignment'_
Project costs

Accurate schedules showing development deliverables, [V&V
activities, V&V deliverables '

Statement of objectives

Criteria for assigning severity ratings

-104-

R

i,

T
RS SRS,

v

5
Eir
g

e
&
fe

i

£

I
Koo
ﬁ‘c .
L9
i
e

o

3
o

S

wr

P
i“&?’ﬁ%’?ﬁ"i!n'.r’:\g.,a.-:_,-:»r S Ay e N

- List of tools usad

- List of project participants

Information that could be recorded by the developer to aid in the ahalysis of
IV&V effects would include:

Accurate schedules
Activities that must be performed to support IV&V
Man-hours spent performing these activities

Cost of paper, tapes, CPU time, etc., for deliverables to the
[V&V contractor

Development techniques used
Programmer productivity figures

Test results

This information about the IV&V and development efforts would be an invaluable
contripution to future studies of this type. ,

-105-

APPENDIX A
PROJECT SELECTION

The project selection activity consisted of:

o CEstablishing selection criteria

¢ ldentifying céndidate projects

¢ Selecting the projects to be used
The following paragraphs describe these activities.
Al, SELECTION CRITERIA
The selection criteria used in the study came from.two different sources.
Basic criteria were set forth in the study's Statement of Work (SUW). These
criteria stated that there were to be at least five IV&V projects, that each
was to involve an unclassified Department of Defense (DoD) program, preferebly

a command, control, communication, and intelligence (C31) application, and
that each was to involve a program having at least 100,000 lines of source

code,
To these basi¢c requirements were added additional criteria aimed at ensuring:

o A balance of higher order language (HOL) and assembly language
programs '

o A balance of real-time and nonreal-time programs

o A balance of modern softwaré engineering and traditional devel-

opment practices .
o A balance of initial deveiopment ond modification efforts

¢ V&V projects pevformed in paralrlci with, rather than subsequent '

to, the developrent effort
"o Complete, rather than on-going, {V&V projects -

o 1V&V projects that had kept good vecords , N
Table A-l summarizes the two sets of selection criteria. -
A2, CANDIDATE PROJECTS

Thirty-five projects were considered as candidates for the study. TYable A-2
sumparizes their characteristics. B o ‘ '

~107-

PR SRR WA SNt e .

Lo el s b i

e el

L. o e SR L e ey e e e

o R L MM ALY I e

-
T U RIS NP AR AN e N,

TS PN

PRSI GO RO, R

3

By ibars e ey L s
Foaidprosmmn s

pooy
~939{dwo)

13l Leded Ul

asue|eg

aoue|eg

aouejeq -

asuepeg

saui| NOOT<

patjlsse[oun

Hmu

god

9391 dwoduj facod/aLe 1/po99
burobug/ajzaduwo)

juandoaA3p
4313Y/Y3LK 19| |eaed U]

:o_umu_mwuoz\w:maaonm>mv MaN

43430
/6uLaa3u 16U 34BM130S UAIPOY

a3~ BIJUON/ A1 }- | 2OY

A1 quassy/0H

L

SaUL] 324N0S NOOT>/N00I<

pa141SS2LoUN/PaLIISSRL)
43Y20/1¢D

gog-uoN/god

A3iliqefieay ejeq A%Al
sn3e3s ARAl

Bupwtf ABAI
9dA1 quaudoianag

anbiuyse] juvawdojanag

$313S1433oedey)
buwmt | weabouad

ad4) sbenbue Huiuweabousd

-108-

e143314) [euciLiippy
azLg weabodd

UoL3EILSLSS2L)
£114n09¢ weuaboudd

uotqed1iddy weabouyd

Aouaby Sutjseaiuo)

sjuslwaALnbay MOS

jied] padissg

sjted} 931qissod

21497149 U0130313S 3d3louad

Uo L43114)

“1-v @198l

e o A o G P i DGR T wresy e
T e G R E.V,\.u,bﬂ....... AT
- . N L

.

b Ay SRR SRR 57

33epLPULI PIOY poon 333 dwogy sa y30g sS3A Y108 e3¢ S I0H oy %06

oy 4 51

{leus oo} poon agaduo) sdg PR oy i ©sY/10H o4 HEE N S?p 21

Liews oot pooy a3a1dwo) $3K PO oy 13 nSY £ 08 o *5¢ oy 595 1

Llews 00) poon 939tdwo)y s3y POy oy 14 WSy /I0H o A6E oy sa) N

L{ems 003 fezep poon poon ajaidwo) s3) may o it usY /0 of €6t o4 s - 5%

3oefoad ur Alaes oo 333jduecou] Buobuy S3A por oy 1§39y sy /U o] 49¢7 o S9i i

; £3111q18504 pooy ajoldwo) s poi oy Yo osy/HH 0 o A9 oN sa} £t

M a3ep1puRs pcon poon 3313pdmo) s3) Mag oy yiog wSY/IoH] H9L1 oH A 21

Llews oof 4rey a3aidmoy s3y poy oN i wsy on n on s3 1
‘ L11eas ooy 41ey s3adwo) s3x my of 14 sy o AL on sS4 0! M.uv
lLlews oo} poon ajadwo) sap Por oN 14 usy oy €€ oy s3i 6 0

11ems 0ol ‘ejep poon poog 933 deo) Sap PO oy 14 wsy oy 174 of 534 8

llems ooy poon ajapduo)y say POy oy 1d vsy on #£2 oy s i

liews oof apey a3a|dwo) s3y poy oy i wsy ol €2 o S 9

tiems oot Jred 313 duwo) on »ay o 13 Bsy o ¥E2Z o s]

a1epLpURd pooy poon 9191dwo) sa L_wme_i oy ylog Y/ 3404 i3 sa) s} »

ajepLpued poon poon a33tdmo) S ylog3 opN yjod wSY/I0H 3ded s (5384 SS9} £

ajqelLeavun eleq 4004 339t dwo) 53A poy of} y309 sy ded é sa) S} 2

ajqejLeaeun eie(Jood 233 dwo) oy M3y oy yiog msy aeg i soy sa} 1

FUENTS ele(uww.www _mﬁw‘.ﬁm poy/Ray muwm“% 1@i/id umwn%a._ paL3issSe) oww“_.uw 1D aon uuwﬁ

$393f0u4g 37epLpUR) INOQY UOIJEWLOJU] -y 3|geL

RYTETPRNNERIPTE R

siwe o

3o9fou4d uy Ajdea ooj 93a|dwoduj putrobug sa) ‘- MBK S3A 33069 sy /oM 1484 ,..u.omw oN S Ge

| AZAI 9nd43 B JON 4124 239 dwoj SaA L S2A iN wsy/H oy - uest | mz <3p £33
19a8load ur Ag4ed o0y 3opdwoou; Bupodug LETY Mmay S3aA yieg wSyY/T0H 324 - — } S,m s} t£
L1ews 003 feiep pooy poog 333 [dwo) Sa4 My oN 13 wsy oy e oN $33 z¢
liews oo} poo9 339|dwo) Sap poR ON 18 oH s34 11 oy 24 i€
L lewS 00§ poog a3ja{duwe) S84 KN oN gL T0H sax #r ey sa 113 W...;.
’ M Liews o0} 4ied 8381duo) SUA PO oy it] w08 S3A 21 o 53} 62 '
ABAT PARRURISUON 4004 933 |dwol oN poy S3) 1IN asy/ T0H S34 *0SE OH S 74
k AZA] P4RpURISUON 4004 238 |0wo) ol may oN it wsy/ I0H k20) #0SE N S L2
Llews ooy 4Leq 839{dwo) oK M3y ON i3 HH oy ¥ ay Sax 74
N j1ews 00f 4004 930 {dwo) ON MmN aa. 13 TOH o8 #¥1 e s3) £ 74
M L Lews ool 4004 938 {dwo) ON NI oK i3 sy N #01 ox w,m» wu.
: 38..5:8 poog pooy bBurysiuid S34 Moy oN 14 wSY/TH = WSt - 9N SR £2
3o9loud uL A{4ea 0o] 933|dwodu] Buiobug Sap HIN sayp ﬁu& WY/ TH oN ——— sy S3% z2
109foud uyp Lf{aed oop 9319 dwodu] be Lobug S3j AN Sap 3083 oy /oM oy ——— oM S3% 12
308fouad up L(4ee 60} 933|dwodu] Buiobup S9A poy 595 Y308 WY/ 1084 [+17] oA oy S} n2
S T Sas RAT L PRRN B Rl T seer T ymsg E R 5

(ponut3uod) s3dsfouad ajeplpue) Inoqy uUCLIBEMOIU] °Z-¥ &|qe]

ATy

Ps R PO AP

T A) 03325 b4y 5 A w48 P78 4 4 e 4 - A oo ant o Aty AR e 5 oee e e s

A1l 35 projects were performed for the DoD. Projects 1 through 4 involved
C I applications; the others did not. The number of source lines ranged
from a Tow of 1K to a high of 350K, with most single programs in the range of
10K to 40K lines. Approximately a third of the projects involved some classi-
fied componerts.

Eleven of the projects dealt with proyrams written entirely in assembly
language. Four dealt with programs written entirely in higher order language.
The remaining 20 involved programs or systems using both types of languages.

Twenty-nine of the projects dealt with real-time programs. Eight involved
programs developed with modern software engineering practices. Approximately
half involved initial development; the other half dealt with modifications to
existing systems., :

Twenty-eight of the IV&V projects were performed in parallel with the develop~
ment effort, only seven were not. All but six of the projects were already
completeds Sixteen of the projects were considered to have good data avail-
ability, seven fair, six poor; in six cases, data were incomplete because the
projects were not yet complete.

A3, SELECTION PROCESS

Of the 35 candidate projects, 12 met the 100,000-1ine criterion. Since five
ot these were either nonstandard IV&V efforts or were in too early a stage for
inclusion in the study, the project selection task consisted of picking five
from among the seven eligible projects: 3, 4, 12, 13, 14, 19 and 23.

A1l of these candidates fulfilled certain of the criteria. A1l were DoD
projects. A1l provided a balance of HOL and assembly language. Any subset
would provide a balance of initial development and modification. All were
perforned in parallel with the development effort; all were complete except
for Project 23, which was nearly so; and all were considered to have good
availability of data.

One important consideration was the relationship of the projects to one
another, Projects 3 and 4 involved two versions of the same system, as did
Projects 12, 13, and 14, The seven projects taken together, therefore,
represented only four different systems, and a selection that included at
least one from each system was desirable. Ather considerations were that
Project 19 was the only one involving modern progranming pragtices and that
Projects 3 and 4 were the only ones involving the desired C91 application.

The final decision was to use Projects 3, 4, 12, 19 and 235 Projects 3 and 4
were both included because of the desirability of using CYi projects in the
study, Project 12 was selected from among Projects 12, 13 and 14 because it
represented the initial development of the system. Projects 19 and 23 rounded
out the selection by bringing into the study the other two candidate systems.

These five projects, in the order discussed, were renamed Projects 1 through 5‘

for the remainder of the study.

«111-

bt 2o brama

f G 5 a3 2 R Tt 43 W b s

e

e ada i ot i

ot

0. 0 1 A BT T3S, e ST o A i V8 o 8, W0 55

B

5

%,(’

b APPENDIX B

§ DATA COLLECTION

% The data collection activity consisted of:

i ¢ Translating the study's objectives into specific questions that
could be answered by the study

Z ¢ ldentifying the data needed to answer these questions

o Developing data collection forms

¢ Obtaining project records

¢ Recording relevant data

e Converting the data to machine-readable form
The following paragraphs describe these activities.
Bl. KEY QUESTIONS
Table B-1 identifies the key questions identified for the study. These
questions focus on the number and characteristics of anomaly reports affecting
software reliability, the number and characteristics of anoma1y reports
affecting software maintainability, gquantitative data concerning IV&V's effect
on development cost and productivity, and ways in which project characteris-
tics affect IVAV results,

B2. REQUIRED DATA

Ana§y§is of the study's key questions revealed that three types of data were
needed:

e Data concerning each anomaly reported by IVAV
e Data concerning IVAV project characteristics
¢ Data concerning development project characteristics

Table B-2 identifies the specific information identified for each of these
catagories.

B3. DATA COLLECTION FORMS

Three data collection forms were developed for the study, corresponding te tha
three types of data required: ,

® An anomaly questionnaire

«113- : o
t llllﬂﬂﬂﬂll IHIII Illilhlﬂl lﬂﬂillﬂ

SERRRIR SRR ;——“'

Car NI

Table B-1. Key Questions Identjfied for the Study

Questions concerning software reliability:

How many of the anomaly reports submitted affected software
reliability?

What development materials did they involve?

What types of anomalies were they?

How severe were they?

What aspects of reliability would they have affected?

What was the operational reliability of the resulting software?

Questions_concerning software maintainability:

How many of the anomaly reports submitted had a direct affect on
software maintainability?

What development materials did they involve?

What types of problems did they report?

How severe were they?

What aspects of maintainability would have been affected?

What were the indirect gffects of reliability anomalies on
maintainability?

Questions concerning development cost and productivity:

[)
¢
e
L)
]

What was the average ratio of IV&V cost to development cost?
What factors affected this ratio? '

In what ways did IV&V increase development cost?

In what ways did IV&V decrease development cost?

What was the cost effect of early detection?

What was the overall cost fmpact of 1W&V?

Questions concerning the improvement of [VAV effectiveness:

How did different IV&V project characteristics affect 1Vav
results?

How did different developuent prOJect characteristics affel -

V&V results?

-114-

g e oo SN R

O TG TR LIRS T 2 T P T) Bt < b NS e 1 AR AT LR T T T © AT AT s TR S PR e - VA £ A x e

~ Table B-2. Data Needed From Each Project

Data concerning each anomaly reported by IV&V:

e Location (specification, code, etc.)
o Type of problem

o Probable effects if left uncorrected
) ngerity

o Detection date

¢ Detection method

¢ Resolution

¢ Resolution date

Data concerning each IV&V project:

¢ Objectives

¢ Schedule

o Man-loading

o Relationship with developer

& Tools and techniques used

o Cost

Data concerning eaéh development project:
¢ Schedule '

¢ Man-loading |

Development practices used

®* ©

Programmer produc;ivity
~ Test results
Software operational performance

Software maintenance requirements

Cost

~115-

s

TET T

e An IV&V project questionnaire
¢ A development project questionnaire
Figures B-1, B-2, and B-3 illustrate these questionnaires.

In preparing the anomaly questionnaire, current literature concerning error
classification was surveyed. Table B-3 presents a sampling of the error
classification schemes found. A significant characteristic of many of these
schemes was their focus on coding errors. Requirement and design errors were
frequently relegated to a single category or ignored altogether., Because IV&V
monitors the entire development process and reports anomalies in requirement
gad dgs;gn specifications as well as code, these schemes were unsuitable for
e Study.

A notable exception to this coding orientation was the classification scheme
devised by the Software Acceptance Criteria Panel of the Joint Logistics
Commanders Joint Policy Coordinating Group on Computer Resource Management.
This scheme, reported by Hartwick (Reference 38)* includes categories in three
areas: specifications, code, and data. It proved the most useful as a basis
for developing anomaly categories.
B4. OBTAINING PROJECT RECORDS
Three types of records were needed for the siudy:

o IV&V technical results

o IV&V project data

¢ Development project data

IV&V technical results were obtained from anomaly reports and anomaly resolu=-

- tion records for each project. Figures B-4 and B-5 provide an example of each

of these forise IV&V project data were obtained from accounting records,
project reports, interviews with project participants, and information provid-
ed by Air Force project officers. Development project data were obtained by
channeling requests through RADC to the appropriate Air Force project offi-
cers, Table B-4 identifies the project records that were obtained.

BY. RECORDING THE DATA
The data-recording activity involved completion of a development and IV&V

project questionnaire for cach IV&V effort' and an anomsly questionnaire for
each anomaly reported. The development questionnaires were, for the uost

part, filled out by the Air force project officers contacted by RADC. The

* Hartwick, R. D., Software Acceptance Criteria Panel Report, Joint Logistics -
Commanders Joint Policy Coordinating Group on Computer Resource Management,

Software Workshop, April 1979,

-113-

e nar e b oA T R it S

e

Foad
%
¥

e N
I ISR L VA WS QR T y+ FRREY S S RN AT e SN T s ey T iR e AR reeomengne e swnsy o e

ANOMALY QUESTIONNAIRE

1. Program Version _

2. Report Date Analysts

Respondent

Report No. Part

3. Anomaly Description
a. Anomaly location:

System/subsystem specification
Interface specification

Software requirements specification
Before-code design specification

P T e
e et Yl

b. Brief description of anomaly

Code
After-code design specification
User documentation

Other

— et e

¢. Anomaly category:
Requirement specification;

() Incorrect requirements
z } Inconsistent requirements
Incomplete requirements
() Other requirement problems:
2 Unclear, untestable
Unfeasible, guestionable
é g txtraneous, inappropriate
Other
{) Presentation problems
} Standards, development practices
g Configuration management
Other
After-cade design specification or
user documentation:

Incorrect documentation
inconsistent documentation
Incomplete dotumentation
Other content problems
) Presentation problems
Standards, development practices
Configuration management
. Other
Other developrent problems
} Hordware system, other prograws
J Other documents -
Unknown origin
Developeent process
Other

4. Spectal circumstances:

Before-cade design specification or code:

) Requirement/design compliance
g Choice of algorithmn, mathematics
Seyuence of operations
} Data definition
)} Data handl?n?:
{) Initialization
() Addressing, indexing
3 ; Misuse of flags

o o s g

Hisuse of counters
Shared mewory locations

(Other
% g Timing or interruptibility
Interfaces or 1/0:
t Input handling
Output
Hardware tnterfaces
External software interfaces
foutine interfaces
() Other design/code probloms
2 Extraneous/inefficient
Pragram error handling
{) Other
Design/cade presentation
Stundards, development practices
Configuration management
Couments, annotations
Other

An ereor made while correcting & previousty-reported anomaiy

g ez

e g A

A non<optimal, rather than incorrect, developwsent decision

A latent error«=not weonhg now but could cause maintenance probless
A hold-over from a providus versivn of the program

A “elone” of 4 previously-reported anomaly

; z A disagresnent asong developuent saterials with none clearly weony
{) Other .

Figure B-l. The Anomaly Questionnaire
«117

R et b

P e T)

4‘

TR LI

5'

B+

A R M I IR N I BT Y AT A s

ONTAMLT AN met v Apam S rin e AR rAT st e mes ma s+ st

: ANOMALY QUESTIONNAIRE-~page 2

Consequences of Anomaly:

a. The anomaly could affect the program's

()} Development {)} Operation () Usability
() Verifiability () Maintainability () Other

b. If it could affect operation, would it specifically affect:
() Correctness {) Security () Other

() Accuracy precision () Efficiency

c. Severity of consequences:

() High () Medium () Low {) Unknown

Detection Information

de

]

(
b

i

(

Ce

{) Manual analysis, specifically
{) Program execution, specifically
{) Tool use, specifically

)

|

IV&V activity at time of detection:

Requirements verification § ; Validation/testing

Design verification Documentation verivicatiun
Code verification () Other

Development phase at time of detection:

Requirements definition 2 Testing

Design Post-testing

Coding amd checkout { Other

Tools or methods that resulted in detection:

Anomaly Resolution:

B

|

b.
(

|

Cs

{

|

d.

3

)

)

|
i

Anomaly acceptance:

Accepted as written g Withdrawn/superseded

Accepted with changes Unknown

Rejected)} Uther

Action takem: »

Fixed and: {)} Fir/workaround deferrcd and:

{ Fix was verifiod) Taken care of later

{ Fix found wrang ; Not taken care of later
Fix not verified Outcome unkngun Or pending

Korkaround adopted

Regated by another change

; Action unknown
Qther

.

No action to be taken

Materials changed ia response 10 report:

System/subsystem spacification Code

Interface spacification ‘ User dotumentation
Software requircibents speacification UnknGuh

Design specification {)} Other

Resolution date

Figure B-1. The Anomaly Questionnaire (continued)
~118-

e P T e A R T M M o Y USRI ESHERE AP PP SRR O s SR ST SRR
¢
%
§ IV&V PROJECT QUESTIONNAIRE Respondent
g 1. Program Version
¢ % 2. Cost of VAV project:
h; g a. Total
3 § b. Labor,
3 j c. Computer
g d. Documentation
f e. Other support
L

3. Duration of project (give start and stop dates):

a. Total

b. Requirements verification

S ————————————

¢. Design verification

d. Code verification

T ————— T ———————————

e, Testing

f. Documentation verification
4. Han-umonths expended:

a. Total

b. Reyuirements verification

¢. Desiygn verification

d. Code verification

~ 2. Testing

€. Documentation verification
5. HRelationship with developer = check one:
. Good '
be Fair «- seme hostility
Ce >9oor == Very poor cooperation; considerable hostility
6. Tools used oh project: .

7. Project participants:

Figure 8-2, The IV&V Project Questionnaire

- -119-

e

oot sk i et L

O e e e 2 T B Rl I I OO - ek e bt Aot U,
& N
b
12
I
¢
5
.'§
DEVELOPMENT PROJECT QUESTIONNALIRE Respondent
1. Program Version
2. Development cost:
’ a. Total
a b. Labor
‘* ¢. Computer
L
d. Documentation
e, Other support
’ 3. Development duration (give start and stop dates):
a. Total
b. Requirements definition phase
. ¢« Design phase —
f dv Code and checkout phase
- 2, Testing phase
4, Han-wmonaths expended:
- . a« Total

be Reyuiresents gefinition

Cs %S\gh
- de . Code and «hgekout

e. Testing

5. 1 Whugramae productivity figures were kept, please provide thed.
6, Tools uted on v‘%}@et: ' -

3. Mure problessjueroes rﬁ*.'egd 'ﬁm‘&s PPOGPaR Lesting?
be 1 s0: ‘ '

® Now eany’

¢ Please vrovide cupies of problemferror poports if avatlabies
& Plesse provide problemfervor rosolutign tnfursatich 17 avatiable.
7. Cperaticnal porforvance:

@ Were problast/eerors datectled Curing uperaticnsl wiel

* Ba i¥ so!
o How matiy? : .
9 Please provide copiet of prohlowsarrer ropsrts 1Y available.
o Pleise provide problawferror rosolulion 1nTommation 1F evatlable.

Figure B-3, The Development Project Questionnaire
~120-

A e I Frama N P b

oLl s

m}?,&;“ﬁ?ﬁif‘ix:\tﬁ?vvﬁf,\«m_»;v S TN T i S S TR s 1N ar e s e 25 e ety e st e s s ane o

UEVELOPMENT PROJECT QUESTIONNAIRE -~ page ¢

8. Maintenance:

a.
b.

[\

d.

9, Which of these
Software Develo

&,

b.

4

e,

When did the program go operational?

Has the program been modified since going operationai?

If so, was modification due to:

User requirements change

Problems/errors detected in operational use

Other:

If modification was due to problems/errors, describe or provide
documentation describing the needed changes.

Yes

Top down design

& At program leve!
o A sysiem lovel
Prograz suppart library

e Wingal RS
L] Baste PSL -
s Full PSt with maragement
dota collection and reprting

Language standards

. Structured code aceonplished

 with steulated conitructs

8 Structured code atconplished

- Itk preprotesior —
e Struttured code dirccily
) compl 1abie ' -
Coding conventions/prosedumes .
¢ RADC-reguived Coding
Toavent 1gas —
® WAL convenkions with code
reading —
» RADC conventions with design
<ode reviews L
Petsonnel Srganl zation
o Naitied progrosacr tesa -
o Rl progrimer tesw -

Figure 8-3. The Developaent Project

-121-

programming practices were used? (See RADC Comauter
paent Specification No. CP 0287796100E)

Ko 1f yes, to what extent?
If no, what was used
instead?

I

!

Questionnaire (continued)

o i, et min o

o >

s o
e BRI RO m N SR, e, 7 - 8 e

Table B-3. Error Categories Found in the Literature

§ ' Authors _ Major Error Categories
- Amory, Clapp Input data
(Reference 39)* Internal data

Computation procedures
Control procedures
.Interface procedures

Rubey Incomplete or erronecus specification
(Reference 2) Intentional deviation from specification
3 Violation of programming standard
2 Erroneous data accessing

3 tErroneous decision logic or sequencing
% Erroneous arithmetic computatrons
Invalid timing

Improper handiing of interrupts

Wrong constants and data values
Inaccurate documentation

Dana, Blizzard . Incomplete or erronecus specification
(Reference 7) Specification violation due to incorrect inmlenantatxon
Violation of programming praciices ,
‘Incorrect data/instruction acress and storing
:‘ , Incorrect logic and sequencing
rf_ : ' ‘ : Incorrect branching and jumping
d : Incurroct equation computation and arithmetic
Incorrect timing and process allocation
Problems with interruptibility and data coherency =
- Incorrect constant value and data forwats
Incorrect documentation
Erronecus use of system harduare/software

Thayer, et al. ' Computat\on
- {Reference %) Logic P
' 7 Data input - _ :
Data handling _ s
Data output : S
Tnterface
Data definition
Data base g
Operatidh
Other
Dotutmentation
. _ . ‘ - :
- , _) |
. : :)
Y Roory, We, and Clapp, J.A., Engineering of Quality Software Systetis _%5_
s ¢ 30ft1§5§ Error Classificotion MethodoTog _ c-fR~73-3§3. Vol. VIT,
aMNe]

-

-122-

Table B-3. Error Categories Found in the Literature (continued)

Authors : Major Error Categories
Hartwick Software specification
(Reference 38) - Unnecessary functions

- Incomplete requirements or design

- Inconsistent requirements or design

- Untestable requirements or design

- Requirements not traceable to higher
specification

- Incorrect algorithm

- Incomplete or inaccurate interface
specifications

Code

Syntax errors

Noncompliance with specifications
Interface errors

Exception handling errors

Shared variable accessing errors
Software support environment errors
Violation of programming standards
Operational support environment errors

§ ¢ & &t 3 8 ¢ 1

Data
- Accuracy

Precision

Consistency

Endres Understanding the problem/choice of algorithm

(Reference 40)* - Machine configuration or architecture
- Dynamic behavior and communication

between processes

Functions offered

Output listings and formats

Diagnostics

Performance

Implementation

Initialization of fields and areas
Addressability

Reference to names

Counting and calculating

Masks and comparisons

* tndres, A., "An Analysis of Errors and Their Causes," Proceedings of
the International Conference on Reliable Software, April 1975, pp. 32i-§§5.

-123-

I A DR T o Lt S5 417 s £ LB rinn e Ny
B S e Rt R TE L UL TR eV AN 0 5 T e R A W SN e Tt A+ s eme hege s e eien

Table B-3. Error Categories Found in the Literature (continued)

Authors Major Error Categories

Estimation of range limits
- Placing of instructions within a module,

bad fixes
Nonprogramming errors
Spelling errors in messages and commentaries
Missing commentaries or flowcharts
Incompatible status of macros or modules
Other -

Bowen

(Reference 41)* Design
Interface
Data definition
Logic
Data handling
Computational
Other

AN/SLQ-32(V) Requirements

V&V SOW Processing design

(Reference 41) Data base design
Interface design
Processing construction
Data base construction
Interface construction
Verification
Specification/documentation

Bowen - Expanded, reduced, or erroneous requirements
(Reference 41) Nonresponsive program design
Incomplete or erronecus program design specifications
Erroneous decision logic or sequencing
[mproper program storage or response time
Improper handling of interrupts
Incorrect module or routine linkages
Erroneous arithmetic computations
Insufficient accuracy in implementation of algoritha
Inaccurate or incomplete comments in prelogue
Erroneous editing for new version update
Incomplete or inconsistent data structure definition
Wrong value for constant or preset data
lmprovar scaling of constant or preset data

% Bowen, J. B., "Standard Error Classification to Support Softwere Reliabil-
ity g?iﬁasnﬁnt.“ Proceedings of the National Computer Conference, 1980,
pp-6 - . .

-124-

g

-

e g gAY =R ST B TSN

Bz R A 7 : - T S TR PR SR e
.

Table B-3. Error Categories Found in the Literature (continued)

Authors Major Error Categories

3 -Uncoordinated use of data by more than one user

: Erroneous access or transfer of data

: Erroneous reformatting or conversion of data

) Improper masking and shifting of data

; Failure to initialize flags, counters, data areas

New error introduced during correction

Noncompliance with programming standards or conventions

: Baker

; (Reference 42)* Computational errors

; Logic errors

Input/output errors

Data handling errors

Operating system/system support software errors
Configuration errors

Routine/routine interface errors
Routine/system software interface errors
Tape processing interface errors

User interface errors

Data base interface errors
User-requested changes

Preset data base errors

Global variable/COMPOOL definition errors
Recurrent errors

Documentation errors

Requirement compliance errors
Unidentified errors

L Operator errors

: Questions

: Hardware errors
: Design/requirement logic errors

Fries Logic errors
(Reference 43)t Data handling errors
User-requested changes
5 Operator errors
v Recurrent errors
. _ , Requirements compliance errors
¥ Computational errors

; *Paker, W. F., Software Data Collection and Analzg A Real-Time System
~ Project Wistory,” RAOC-TR=T7-T9Z, June ;
: + Fries, M. J., Software Error Data Acau1$it10ﬂ R“DC“ TR-77-130, April
1917,
-126~

e R RN R

D N T B T R R T AT 0

&

3 Table B-4. Project Records Obtained for the IV&V Study

3 Needed . . Project Project Projeét Project Project
X Information . 1 2 3 4 S

Technical Results

e

AnomaTy Reports . ox X X X X
) Anomaly Resolution Data X X X X X
f IV&V Project Data
: Cost X X X X -
: Schedule X X X X X
i Man-loading - - X X X
' Objectives , X X X X X
Relationship With
Developer X X X X
Tools Used X X X X X
Participants X X X X X
Development Project Data
Cost X X X X -
Schedule X X X X X
Man-loading X X X X X
Programmer Productivity - - . - -
Test Results % X X 3 %
Operational Performance X X - X N/A
Maintenance Requirements X X - N/A NZA
Progranmming Practices X X X X X
«126~

FEMANSEINTY ;e

W04 uoLIN[osay Apeaouy [edrsdAl “p-g a4nbrjg

aeg HONNOSI| Eo T 213AIG 4 Oty
uonnjosay >.~=§..¢w- uodsy v »»mﬂ:oc(:wwue__on(uﬁx .
139f04d ’ .
NOLLATOS3HY ATVINONY

-127-

B

£t

-
T e

L A A A AL M A AYA £ et P e A e

st et RS PEGEAR,

IV&V ANOMALY REPORT

Project___ i . Analyst

Report No. i Subject

Date

P e

Anomaly Type: Requirements _Design — Code

Anomaly Severity: —__High —Medium ——Low
Modules Affected:

Documentation

Documents Affected:

| References:
Description:

Etfects:

Recommendations:

Figurre B-5. Typical Anomaly Report Form

-128-

S’ ot <o o

R R A T,

P
¢

IV&V project questionnaires were filled out using Logicon records and IV&V
management data supplied by Air Force project officers.

Most of the data-recording activity was devoted to filling out the anomaly
q?est1onna1re. This process consisted of the following steps for each anom-
aly:

e Recording program name, version, anomaly repori number, date,
analyst, location, and severity

8 MWriting a short description of the anomaly

3 Making judgments as to anomaly category and effects

¢ Correlating the anomaly report date with IV&V and development

: 3chedu1fs to determine the phase in which the anomaly was
etecte

¢ Cross-referencing the report to anomaly resolution forms to
determine its acceptance and resolution

o Determining, often by inference, the detection method and
special -circumstances associated with the anomaly

The following paragraphs discuss lessons learned in this process.

BS.1 Severity Ratings

The study originally proposed to classify anomalies into four severity
categories-~Critical, Serious, Moderate, and Trivial--as had been done in
the IV&V study conducted by Dana and Blizzard (Reference 7). Al) five of the
IV&V projects selected for the study, however, used only three levels--High,
Medium, and Low--and it was decided to adopt these three levels rather than to
try to map the three levels given on the anomaly reports to the four levels
proposed for the study. '

Upon closer inspection, it turned out that two of the projects--Projects 1 and
2--had actually used six severity ratings: MHigh with nuclear safety implica-
tions, High without nuclear safety implications, Medium with nuclear safety
implications, and so on. Discussions with project participants revealed that
simply ignoring the nuclear safety implications and using the High, Medium,
and Low designations would be inaccurate because anomalies with nuclear safety
implications are inherently more serious than those without., The partici-
pants' recommendation was to use the nonnuclear safety ratings as they were,
but to rate High and Medium nuclear safety anomalies as High, and Low nuclear
safety anomalies as Medium. This is the approach that was used.

Another interesting discovery was that there were two distinct aperoaches to
assigning severity ratings. One approach asked the question: “How severe
would the consequences be if the problem made possible by this anomaly were to
occur?™ The other asked the dual question: “How likely is it that this
anomaly will cause an operational problem, and how severe would the conse-
quences be if the problem occurred?”

-129~

R e T T T

s oA

The two approaches can result in considerably different severity ratings.
Many anomalies concern a remote, yet real, set of circumstances that could
affect program operation. These anomalies would be rated higher using the
first approach than the second. Anomalies concerned with incorrect documen-
tation, code that is wrong but happens to work correctly in the current
version, and other such problems would also be rated differently by the two

approaches.

The question that arose for the study was how to resolve the potentially
inconsistent ratings for the five projects. Discussions with project partic-
ipants, however, led to the conclusion that the soundest approach was to use
the ratings that were originally assigned, despite their different interpre-
tations. Severity ratings are by nature subjective, and if the IV&V agency,
DoD project officer, and developer all agreed to a given rating at the time of
the project, that rating reflects project outcome more accurately than one
that might be imposed later. Except for the nuclear safety anomalies, there-
fore, all severity ratings were accepted without change.

B5.2 When is a "Typo" not a "Typo"?

In categorizing documentation anomalies, an attempt was nade to differentiate
between "substantive" anomalies, such as incorrect, inconsistent, and incom-

plete facts, and “"presentation" anomalies, such as format errors and typo-

graphical errors. The distinction turned wut to be unclear in the case of
typographical errors.

In English text, most typographical errors are easily recognizable as such.
A sentence that says "The program shall accept 400 inputs per sacond” may give
the reader pause, but is, after a moment's thought, understandable. On the
other hand, if the sentence says "The program shall accept 40 inputs per

second,” where "40" should be "400," a typographical error has turned into a .
potential development disaster if not caught and corrected.

Because of the wide disparity in the potential effects of typographical
errors, each such anomaly was judged on it own merits. General guidelines
that emerged were that ecrors in the typing of numbers, mathematical symbols,
variable names, and set/use table entries were regarded as substantive anon-

alies; those for which interpretation of the intended meaning was relatively
clear were classed as presentation problems.

8543 Anomaly Effects

For purposes of the study, the effect of each anomaly was at least as impor-
tant as its cause. During the course of the data collection activity,
certain guidelines emerged for determining anomaly effects. The tollouing
paragraphs describe these guidelines.

85.3.1 Requivement Specification Anomalies

The impact of a requirement specnfication anomaly depends upon both the type

-of problem and the development stage in which it is detected. Anomalies

detected before the appearance of design or code were generally considered to

-130-.

2L

affect program development, verifiability, operation, and maintainability.
For anomalies detected after the appearance of design or code, the following
guidelines applied:

¢ If a faulty requirement resulted in faulty design or code,
it was considered to have an impact on program development,
verifiability, operation, and maintainability.

o If the design and code were correct despite the faulty require-
ment, the requirement anomaly was considered to have an impact
on verifiability and maintainability or on maintainability
alone, depending on the anomaly.

B5.3.2 Design Specification Anomalies

The impact of an anomaly in the design specification was also determined by
both the type of anomaly and the time at which it was detecteds Anomalies
detected in the before-code design specification were regarded as design anom-
alies and were usually considered to have an impact on program development,
operation, and maintainability, Usability was sometimes affected; verifiabil-
ity was usually not since software is tested against requirements rather than
design. Anomalies detected in the after-code design specification were
treated as follows:

o If the faulty design resulted in incorrect code, the design
specification anomaly was considered to affect development,
operation, and maintainability,

o If the code was correct, the design specification anomaly
was considered to affect maintainability only.

B543¢3 Code Anomalies

. Most code anomalies affected program operation. Anomalies affecting usability

included implementations that provided unclear output messages, or cases in
which input formats were overly restrictive. Anomalies affecting maintaina~

bility included cases of extraneous or inefficient code, incorrect comments,

inconsistent implementation, and code that was incorrect but happened to work
correctly in the current version.

BY.3.4 User Documentation

z

!

Most user documentation anomalies affected program usabillity. A few were con-

siderad to affect maintainability as well.

B5.4 | Devection Methods
Of considerable interest to the study were the tools‘{and techniques that

resulted in the detection of each anomaly. Unfortunatdly, this information
was not generally contained in the anomaly reports and was therefore unavail-
able to the study., In many cases, the IV&V technique could be inferred from
the IV&V activity in progress at the time of detection. Requirements verifi-

-131-

L e RS

St SR e
T KRR (M RN T o 75 R FY vrm mvm £ - S5 v e e

to involve program execution. For code verification, however, detection
could have resulted from either manual .analysis or use of static. analys1s
tools, so no assumption could be made.

Bebe GENERATING THE IV&V DATA TAPE

The final task of the data collection activity was preparing a magnetic
tape containing the data collected. This task consisted of:

e Determining the required tape characteristics from the Data and
Analysis Center for Software (DACS), where the tape was to
reside

o Designing the tape format

e Selecting an encoding scheme for the data

e Encoding the data

¢ Transferring the encoded data to magnetic tape

¢ Generating a listing of the tape contents

The tape and listing were used fur subsequent data analysws. At the conclu-
sion of the study they weie delivered to RADC.

-132-

e 4 e

APPENDIX C
SOFTWARE FEATURES THAT CONTRIBUTE TO MAINTAINABILITY

Specific software features that contribute to maintainability are given below
(References 17, 19, 44%),

Area Feature

Requirements Correct requirements
Consistent requirements
Complete requirements
Testable requirements
Inclusion of traceability information
Design Allowance for excess computer capacity
Top-down design
Modular design
Modules of limited size
Single function for each module
Separate modules for input, output, computation

Single eatry, single exit for all modules, except for
certain computer interrupts and error-condition exits

Initialization and hbusekeeping funct ions internal to
the modules needing them

Orly cantrol modules able to make abort decisions

- Communication butween modules limited to defined inter-
- faces

A1l control data passed only through defined interfaces
Coherent conceptual organization |

Consistent application of design principles

#Stanfield, J. R., and Skrukrud, A. M., Software Acquisition Management
‘Guidebook: Software_ﬂa1n;enance. ESD-TR- ’ .

-133-

R TR T I A R T X R L ST TR e i e & oo § e e et g, areee

2 __Area Feature
?5' Design ‘Centralized data base

3 (continued)

s Controlled data base

Limited access to data base by each module
Procedures to define and control data base entries
Module and data base interfaces not overly complex
Data base designed for expansion and change

Data base symbolically defined

Limited equipment interfaces

Machine dependencies isolated and encapsulated
Allowance for future extensions

Self-monitoring features

Code Full implementation of design features that contribute
to maintainability

Maintaining a reasonable storage and time margin
Use of a single higher order language if ‘vossible

No assembly language embedded in other code unless ex~
plicity called for

Adherence to module size constraints
Use of structured programning

Us$‘of blank cards to set off functional blocks vise
ually

Use of indentation teo reflect block structure
Use of general comments preceding each module

Use of adequate comments to identify flow of control and.
purpose of each section

Adequate commenting of timpesensitive areas to alert
myintainers-

T ¢ T AT ot S

R R e

el

A nT T AT ARRTACSITNM T R M @I T ST W T S g et e e s

Area Feature
Code Use of symbolic parameters for constants and basic data
(continued) structure sizes
Use of subroutine arguments rather than global commion
Use of named common
No sharing of variables or temporary storage locations
No self-modifying code
No absolute addressing
No relative addressing
No embedded constants or literals
Symbolic, meaningful data references
No code that implicitly couples one module to another
Avoidance of dynamic allocation of -esources
Avoidance of unnecessarily complen arithmetic ang con=
~ditional statements _
‘Avoidance of recarswve/reentrant codtng
Avoidance of unnecessarily complex logical structures
- Consistency in design implementation, 1/0 processing,
_error processing,. mndule interfacung. module/varwable
~ haming
Inclusion of test aids or impleﬁnntatxon to support
their use
~ Documentation Coaplete, accurate descripticn of the program as coded

~ Incorporation of all design changes wade during coding

and testing

Time-sensitive portnons of code cleariy identified and
described

- Nodular organization

‘Consistency in detail and style

Emphasis on ease of use
-135-

¥
&
5

R

SRR T Y L A AR

Area

—w-_‘—______“‘__"‘“"_‘“:‘“—————~———————~————————____________________f_

WAV LR N MR IR L ek g o i VR e .
X AR R R TR IR ORI T AR T SO NI 50 A RIIN AT % Ga + s AU A A G AT TS ATAB KU 45 <A A% £+ s iR e e

Feature

Jocumentation
(continued)

Configuration
Management

Inciusion of objectives and assumptions
Avoidance of complexity | |
Allowance for expandability and ease of change

Accurate status records for software, documentation,
and changes

Accurate date and version indicators in source listings
and documentation

Adequate control and documentation of changes during
development

Consistent numbering schemes to relate corresponding
source listings, documentation, status records

Controlled use of program patches

6.

R R
< :Theory To Classify and Detect Software Errors, Logicon Report HR-74012,

A‘¥f8.j“FinfGP M. C., Software Data Collection Study, Volume 1IT: Data Require-
© " ments for ProduCtivity and Reliability studies, RADG-1R-/6- - Vol.
N

S,

1.

1.

13,

14,

REFERENCES

Nie, N. H., et al., Statistical Package for the Social Sciences, McGraw
Hi1l, 1975. '

Rubey, R. Jey “Quantitativé Aspects of Software Validation," Proceedings
of the International Conference on Reliable Software, April 1375, pp.
246-251.

Boehm, B. W., et al., "Characteristics of Software Quality,” TRW Software
Series TRW-SS-73-09, Dec. 1973.

Proceedings of the TRW Symposium on Reliable, Cost-Effective, Secure
Software, March 1974, pp. 5.13-5.17.

Thayer, T. A., et al., Software Reliability Study, RADG-TR-76-238, Feb.
1976, A030798. .

‘Shooman, M. L., and Bolsky, M. I., "Types, Distribution, and Test and

Correction Times for Programming Errors," Procedures of the International
Conference on Re11ab]e Software, April 1975, pp. 347-357.

Dana, J. A., and Blizzard, J. B., The Development of a Software Error

May 1974

11, June 1976, AG36064.

‘iRadatz, J. W., Ramsey, 0.C., and McK1l1op, T. L., NSCCA/PATE Guidebooks,
“Volume IIT, Logicon Report R:SED-80204-111, June 1980.

Miller, C. R., "Software Maintenance and Life Cycle Management," Software

Phenomeno] ogy--Working Papers of the Software Life Cycle Managemenf Work=
snop, Atrlie House, Aug. 1977, pp. 53-09%.

Fxfe D. W, "Software Management Standards," Software Phenomenolog¥--
erkxng Papers of the Software Life Cycle Management Workshop, rlie
House, Aug. 1977, pp. 63-80,

Prokop, J., Computers in the NQJZ, Annapolis, HD. Naval Institute Press,
1976, |

Robinson, D. G., “Beyond the Four Stages: What Next," Software Pheno-

vneno\o%F--Horkang Pagars of the Software Lite Cvcle Management wbrkshop.
~ Airlie House, Aug., 1377, pp. . _ _

McGonagle, J. D., A Study of a Software Development Project, James P.
Anderson and Co., Sept. 1971, '

-137-

v AV . £ SR G o PO A S T St s T
B A e SRR i
B .
¥

15. Boehm, B. W., “Software and Its Impact: A Quantitative Assessment,"
Datamation, May 1973, pp. 48-59.

16. Lehman, M. M., “Evolution Dynamics--A Phenomenology of Software Mainte-
nance," Software Phenomologg--worklng Papers of the Software Life Cycle
Management Workshop, Airlie House, Aug. 1977, pp. 313-323.

17. Peercy, D. E., "A Software Maintainability Evaluation Methodology,"
; Proceedings of the AIAA 2nd Computers in Aerospace Conference, Oct. 1979,
i pp. 315-325.

- 18. Boehm, B. W., “Software Enginering," IEEE Transactions on Computers, Dec.
1976, pp. 1226-1241.

19, Neil, G., and Gold, H, I., Software Acquisition Management Guidebook:
Software Quality Assurance, ESD-TR-77-255, Aug. 1977.

20, Georghiou, D. L., Guidelines for Programming in Portable Fortran, Logicon
Report No. DS-R78069, Sept. 1978. ~

2l. Donahoo, J. D., A Review of Software Maintenance Technology, RADC-TR~80-
13, Feb. 1980, AQBZ98S.

22, Basili, V. R., and Zelkowitz, M. V., "Analyzing Medium=-Scale Software De-
velopment," Proceedings of the Third International Conference on Scftware

Engineering, May 1978, pp. 116-123.
23. Doty, D. L,, Nelson, P, J., and Stewart, K. R., Software Cust Estimation

Study, Volume 11: Guioelines for ImEroved Software (Cost Estimating, .
R C- R" 6 ao‘c fi .

24, 2gog§s, Fo Poy “The Mythical Man Month," Datamation, Dec. 1973, Pp.

' 25. Nanus, 8., and Farr, L., "Some Cost Contributors to Large Scale Pro- .
~ grems," Proceedings - Spring Joint Computer Conference, 1964, pp. uo9»

5 - oo,
(PN PRt o e o Pt Tl ®

i 248.
in 26, Fxnfer, M. C., and Mish, R., Software Ac uisition ﬁanaqaaent Gu’ qebook
3 Cost Lstimation and Measurement ESD-TR-73- ar. 1980,

-~ 27. Malston, C. E., and Fe1ix. C.P., "A Method of Progrannﬁng Messurement. and
Estimation," Software Phenomenology--Woiking Papers of the Software Life
Cycle Management Workshop, Airlie ouse, Aug. 1977, pp. lSS»II#. ‘

28, (ffice of the Secretary of Defense, kwbedded Com uter Reaources and the
%géﬁc Provesse-4 Guidebook Part ! bo?E wire fs»im&fing ﬁui&ei?nes..'

i
2l

29, ‘l;ove, T, I“Saftwre fsychoiogy ﬁhrinkin? Ufp-(.yc?e cc::s‘ts.:‘ boftwm. S
henomenology=--Werking Paperes of the Software Life Cycle anaggmgni
ﬁorksﬁo{ irlie House, ug. 77, PP 355-625.v

Ry - . L. .
g _ , _-138"'.

2
‘ 2’! -

o 2L

§ o

S
s '*_a"«'"*d i AT

’%&Wm o

IR PR 0 1 o

-
49
3

Rt et

I A Lt s s 0 g eae e e g e

e TSN, SRR

30.

31.

32.

33.

34.

35.

36.

3.

38.

39,

40.

41.

LY

43.

WAy + 2R R g S AT AR E AT 8+ WA SRS FAYRC, 1 N 4G) R S SRS e s

Wolverton, R. W., "Cost Estimating Algorithm," Proceedings of the IEEE
Computer Software and Applications Conference, Nov. 1977, pp. 235-245.

Schwartz, J., "Resource Estimation," Softwarz Phenomenology -- WOrking
Papers of the Software Life Cycle Management Workshop, Airlie House,
Aug, 1977, pp. 117-130.

Norden, P. V., "Project Life Cycle Modelling: Background and Application
of the Life Cycle Curves," Software Phencmenology -- Working Papers of
the Software Cycle Menagement Workshop, Airlie House, Aug.. 1977, pp.
217-227. '

Black, R. K. E., "Effects of Modern Programming Practices on Software
Development Costs," Proceedings of the 15th 1EEE Computer Society Inter-
national Conference, Sept. 1977, pp. 250-253.

Wolverton, R. W., "The Cost of Developing Large-Scale Software," IEEE
Transactiors on Computers, June 1974. ,

Herndon, M. A., and Keenan, A. P., "Analysis of Error Remediation Ex-
penditures During Validation," Proceedings of the Third International
Conference of Software Engineering, May 19/8, pp. 202-205.

Miyamoto, I., "Software Reliability in On-Line Real Time Environment,"
Proceedings of tha International Conference on Reliable Software, April
1975, pp. 194-197.

Weinberg, G. M., “The Psychology of Improved Programming Performance,"
Datamation, Nov. 1972.

Hartwick, R. D., Software Accentance Criteria Panel Re ort, Joint Logis-

tics Commanders Joint Jolicy Coordinating Group on Computer Resource
Management, Software Workshop, April 1979, ‘

‘Amory, W,, and Clapp, J. A., Engineering of Quality Software Systems {A =
Software Error Classification Methodalogy), RADC-TR-/4- - -Vol. VII,

Endres,‘A. “An Analysis of Errors and Their Causes," Proceedings ¢f the
Internatioﬁal Conference on Reliahle Software, April’1§75, R 337»3

Bowen, J. B., "Standard Error Classification to Suppoét Software Relia-
bility Assessment,” Proceedings of the National Computer Conference,
1980, pp. 697+705. R

Baker, W. F., Software Data Collection and Analysis: A Real-Time System
Project History, RADC-TR-77-19Z, June 1977, A041634. L

Fries, M. J., Software Error Data Acquisition, RADC-TR-77-130, April -
19774 AD39916. ~ | |

- Stanfield, J. R., and Skrukrud, A. H;, Software Acquisition Management . -

‘Guidebnok: Software Mainrenanc&, ESD=TR-T 7327, Oct. 7. -

-139-

" MISSION
of |
Rome Air Development Center

RADC plans and executes nesearch, development, test and
selected acquisition programs in Support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering Support within areas of technical competence
48 provided to ESD Program 04fices (P0s) and other ESD
elements. The principal technical mission areas are
communications, electhomagnetic guidance and control, .sur-
veillance of ground and aenrospace objects, intelligence data
collection and handling, information system technology,
donosphenic propagation, solid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.

